

Modulhandbuch Naturwissenschaft und Technik LA Master Gymnasien 2015 Hauptfach (Master of Education (M.Ed.))

SPO 2015 Sommersemester 2022 Stand 10.03.2022

KIT-FAKULTÄT FÜR CHEMIEINGENIEURWESEN UND VERFAHRENSTECHNIK

Inhaltsverzeichnis

1.	Allgemeine Informationen	3
2.	Qualifikationsziele	8
3.	Studienplan	9
4.	Aktuelle Änderungen	16
5.	Aufbau des Studiengangs	17
	5.1. Masterarbeit	
	5.2. Wissenschaftliches Hauptfach Naturwissenschaft und Technik	17
6.	Module	18
	6.1. Fachdidaktik NwT III - M-CIWVT-104204	
	6.2. Modul Masterarbeit - Naturwissenschaft und Technik - M-CIWVT-104480	
	6.3. Vertiefungspraktikum NwT - M-CIWVT-104205	21
	6.4. Wahlpflicht Bauingenieurwesen - Holzbau [bauiEX103-NWTHB] - M-BGU-104518	
	6.5. Wahlpflicht Bauingenieurwesen - Hydrologie [bauiEX215-NWTHYDROL] - M-BGU-104623	
	6.6. Wahlpflicht Bauingenieurwesen - Wasserbau [bauiEX214-NWTWB] - M-BGU-104622	28
	6.7. Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik - Vertiefung Lebensmittelverfahrenstechnik - M- CIWVT-105866	30
	6.8. Wahlpflicht Elektro- und Informationstechnik - Elektrotechnik - M-ETIT-104766	
	6.9. Wahlpflicht Elektro- und Informationstechnik - Informationstechnik - M-ETIT-104765	
	6.10. Wahlpflicht Maschinenbau - Technik erleben und vermitteln - M-MACH-104070	
	6.11. Wahlpflicht Verfahrenstechnik - Grundlagen Lebensmittelverfahrenstechnik - M-CIWVT-104479	
7.	Teilleistungen	
	7.1. Biomechanik am Design in der Natur für NwT-Lehramt - T-CIWVT-111945	
	7.2. Einführung in die Hydromechanik - T-BGU-109478	
	7.3. Erzeugung elektrischer Energie - T-ETIT-101924	
	7.4. Extrusionstechnik - T-CIWVT-111435	
	7.5. Führung von Teams (NwT) - T-MACH-108699	
	7.6. Grundlagen des Holzbaus - T-BGU-107463	
	7.7. Hybride und elektrische Fahrzeuge - T-ETIT-100784	
	7.8. Hydrologie - T-BGU-109480	
	7.9. Informationstechnik I - T-ETIT-109300	
	7.10. Informationstechnik I - Praktikum - T-ETIT-109301	
	7.11. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319	
	7.12. Kooperation in interdisziplinären Teams (NwT) - T-MACH-108697	
	7.13. Laborpraktikum - 1-860-103403	
	7.14. Lebensmittelkunde und -funktionalität - T-CIWVT-111535	
	7.16. Masterarbeit - Naturwissenschaft und Technik - T-CIWVT-109162	
	7.17. Mechatronische Systeme und Produkte (NwT) - T-MACH-108698	
	7.18. Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht - T- CIWVT-111946	57
	7.19. Praktikum Lebensmittelverfahrenstechnik - T-CIWVT-100153	58
	7.20. Projektarbeit Holzbau - T-BGU-109476	
	7.21. Projektorientierter Unterricht am Beispiel des Mikrocontrollers - T-CIWVT-109159	
	7.22. Prüfungsvorleistung Einführung in die Hydromechanik - T-BGU-109477	
	7.23. Sicherheit und Unfallschutz - T-CIWVT-109161	62
	7.24. Trocknen von Dispersionen - T-CIWVT-111433	
	7.25. Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung - T-CIWVT-106058	
	7.26. Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel - T-CIWVT-100152	
	7.27. Wasserbau und Wasserwirtschaft - T-BGU-109479	
	7.28. Workshop Entwicklung mechatronischer Systeme und Produkte (NwT) - T-MACH-108694	68

1. Allgemeine Informationen

1.1 Das Lehramtsstudium am KIT

Struktur der Lehramtsausbildung am KIT

Die Lehramtsausbildung am KIT setzt sich aus dem Bachelorstudiengang Lehramt an Gymnasien mit dem Abschluss *Bachelor of Education (B.Ed.)* sowie dem Masterstudiengang Lehramt an Gymnasien mit dem Abschluss *Master of Education (M.Ed.)* zusammen. Der Abschluss Master of Education befähigt zum Vorbereitungsdienst (Referendariat) und mündet letztendlich im Beruf Lehrkraft. Ein drittes Fach kann am KIT im Hauptfachumfang als Master Erweiterungsfach studiert werden. Dies ist auch nach Abschluss des Lehramtsstudiums mit Staatsexamen möglich.

Die Regelstudienzeit für das Bachelorstudium beträgt 6 Semester bei einem Studienumfang von 180 ECTS-Punkten (ECTS = LP, Leistungspunkte am KIT). Für das Masterstudium sind 4 Semester mit 120 ECTS-Punkten abzuleisten.

Abbildung 1-1: Ausbildungsweg zur Lehrkraft an Gymnasien.

Das Lehramtsstudium gliedert sich in drei Teilbereiche:

- 1. Fachwissenschaftliches Studium:
 - Fachstudium der gewählten beiden Hauptfächer
- 2. Fachdidaktisches Studium:

Aneignung fachspezifischer Theorien und Methoden zur Vermittlung des Unterrichtsstoffs beider Hauptfächer

3. Bildungswissenschaften und Schulpraxisphasen:

Erwerb von pädagogischen und weiteren lehramtsspezifischen Qualifikationen Orientierungspraktikum (3 Wochen im Rahmen des Bachelorstudiums) und Schulpraxissemester zur Berufsorientierung und -vorbereitung (12 Wochen im Masterstudium)

Abbildung 1-2: Die Teilbereiche des Studiums mit NwT als eines der beiden Hauptfächer

Struktur des Masterstudiengangs Lehramt an Gymnasien am KIT

Der Masterstudiengang Lehramt an Gymnasien setzt sich aus den folgenden Bestandteilen zusammen, die als Teilstudiengänge im Studiengang Lehramt an Gymnasien mit Abschluss M.Ed. bezeichnet werden:

- Teilstudiengang 1: Wissenschaftliches Hauptfach 1: 27 LP (Fachwissenschaft + Fachdidaktik)
- Teilstudiengang 2: Wissenschaftliches Hauptfach 2: 27 LP (Fachwissenschaft + Fachdidaktik)
- Teilstudiengang 3: Bildungswissenschaftliches Begleitstudium: 33 LP
- Teilstudiengang 4: Schulpraxissemester: 16 LP
- Teilstudiengang 5: Abschlussarbeit (17 LP) und freiwillige Bestandteile (z.B. Zusatzleistungen etc.)

Die 120 LP verteilen sich dabei wie nachfolgend dargestellt auf die Teilbereiche des Fachwissenschaftlichen Studiums und der Fachdidaktik der beiden Fächer, auf die Bildungswissenschaften und das Schulpraxissemester als Praxisphase sowie auf die Abschlussarbeit.

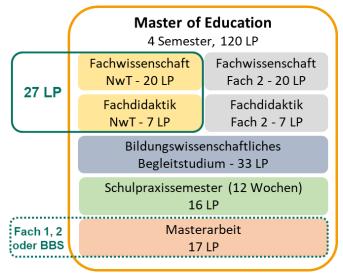


Abbildung 1-3: Aufbau des Masterstudiums mit NwT als eines der beiden Hauptfächer

1.2 Der Teilstudiengang Naturwissenschaft und Technik (NwT)

Der Teilstudiengang Naturwissenschaft und Technik (NwT) kann nur in Kombination mit einem der Fächer Biologie, Chemie, Geographie oder Physik studiert werden. Grundsätzlich gliedert sich das Studium in *Bereiche* (Pflicht- und Wahlpflichtbereich), *Module* und *Lehrveranstaltungen*. Jeder Bereich ist in Module unterteilt. Jedes Modul besteht wiederum aus einer oder mehreren aufeinander bezogenen **Teilleistungen**, die aus unterschiedlichen Lehrveranstaltungen, wie beispielsweise Vorlesungen, Praktika und Seminaren bestehen können. Ein Modul wird durch eine Modulprüfung oder mehrere Teilleistungsprüfungen abgeschlossen. Der Umfang jedes Moduls ist durch Leistungspunkte (LP) gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls gutgeschrieben werden.

Das Masterstudium stellt den Vertiefungsbereich im NwT-Studium dar, indem es die Möglichkeit bietet, die im Bachelorstudium erworbenen breiten Kenntnisse in den allgemeinen Grundlagen der Technik in zwei technischen Themengebieten (Wahlpflichtmodule I und II sowie Praktikum) zu vertiefen.

FB	Modul	LP	Teilleistung	/Lehrveranstaltung	LP	Turnus	Hinweise
				Biomechanik am Design in der Natur für NwT-Lehramt	2	SS	
	Vertiefungspraktikum NwT	4	Wahl Praktikum	Laborpraktikum - Bauingenieurwesen	2	WS	
Technik- wissen-	TVW I			Informationstechnik I - Praktikum	2	WS	Nur in Kombination mit Wahlpflichtmodul Informationstechnik
schaften			Sicherheit und Unfallschutz		2	WS/SS	
	Wahlpflichtmodul 1	8	Wahl von 2 Modulen aus 2 verschiedenen Vertiefungs- bereichen: Bauingenieurwesen,		8	s.u.	Siehe Folgeseite
	Wahlpflichtmodul 2	8		Elektro- und Informationstechnik, Maschinenbau, Verfahrenstechnik		s.u.	Siehe Folgeseite
				ntierter Unterricht am s Mikrocontrollers	4	SS	
Fachdidaktik NwT	Fachdidaktik NwT III	7	Digitale We	npetenz im Lehramt: rkzeuge im nschaftlich-technischen	3	SS	

Abbildung 1-4: Übersicht der Module im Teilstudiengang NwT M.Ed. FB: Fachbereich; WS: Wintersemester; SS: Sommersemester; LP: Leistungspunkte=ECTS

FB	Modul	Teilleistung/Lehrveranstaltung	LP	Turnus	Hinweise
	Holzbau	Grundlagen des Holzbaus	4	WS	
	поіграц	Projektarbeit Holzbau	4	SS	
Bauingenieurwesen	Wasserbau	Einführung in die Hydromechanik	4	SS	
baumgemeur wesen	wasserbau	Wasserbau und Wasserwirtschaft	4	WS	
	Hudrologio	Einführung in die Hydromechanik	4	SS	
	Hydrologie	Hydrologie	4	WS	
		Verfahrenstechnische Grundlagen			
		am Beispiel der	3	WS	
Chemieingenieurwe	verfahrenstechnik	Lebensmittelverarbeitung			
sen und		Praktikum Lebensmittel-	1	SS	
Verfahrens-technik		verfahrenstechnik	-	33	
		Lebensmittelkunde und -	4	WS	
		funktionalität	7		
		Informationstechnik I	4	SS	
Elektro- und	Informationstechnik	Informationstechnik II und	4	SS	
Informations-		Automatisierungstechnik	7	33	
technik	Elektrotechnik	Hybride und elektrische Fahrzeuge	4	WS	
	Licktroteciiiik	Erzeugung elektrischer Energie	4	WS	
Maschinenbau	Technik erleben	Mechatronische Systeme und	2	WS	
Wascimicfibau	und vermitteln	Produkte	_	VVS	

	Workshop Mechatronische Systeme	2	WS	
	Kooperation in interdisziplinären Teams	2	WS	Anmeldung per Mail an Matthias Eisenmann, IPEK
	Führung von Teams (NwT)	2	WS	Liseimiam, ii Ek

Abbildung 1-5: Übersicht der Wahlpflichtmodule im Teilstudiengang NwT M.Ed. FB: Fachbereich; WS: Wintersemester; SS: Sommersemester; LP: Leistungspunkte=ECTS

Das Modulhandbuch beschreibt die zum Teilstudiengang gehörigen Module. Dabei wird auf folgende Punkte eingegangen:

- die Zusammensetzung der Module
- den Umfang der Module in LP
- die Abhängigkeiten der Module untereinander
- die Qualifikationsziele der Module
- die Art der Erfolgskontrolle

Das Modulhandbuch ist daher das Dokument, das wichtige, die Studien- und Prüfungsordnung (SPO) ergänzende Informationen darstellt. Es soll der Orientierung dienen und hilfreicher Begleiter im Studium sein. Das Modulhandbuch ersetzt jedoch nicht das Vorlesungsverzeichnis und die Aushänge/Bekanntmachungen der Institute, die aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) sowie ggf. kurzfristige Änderungen oder Anmeldefristen für Praktika und Workshops informieren. Es ist daher zu empfehlen, sich zu Semesterbeginn auf den Websites der jeweiligen Institute über aktuelle Bekanntmachungen zu Lehrveranstaltungen zu informieren. Alle Angaben in diesem Modulhandbuch stellen eine unverbindliche Informationsquelle dar und können keine Gewähr auf Vollständigkeit der Inhalte geben.

1.3 Das Bildungswissenschaftliche Begleitstudium

Für das Bildungswissenschaftliche Begleitstudium existiert ein separates Modulhandbuch, das auf der Seite des Zentrums für Lehrerbildung zum Download zur Verfügung steht: (https://www.hoc.kit.edu/zlb/850.php).

Hier finden sich auch detaillierte Infos zu den Schulpraxisphasen.

Sie sind sich noch unsicher, an welche Schulen Sie dafür am besten gehen sollen? Die **Studiengangkoordination NwT Iris Hansjosten** hilft gerne weiter, egal ob es ums Orientierungspraktikum im Bachelor- oder ums Schulpraxissemester im Master-Studium geht.

1.4 Nützliches und Informatives

Die Website des Teilstudiengangs NwT (http://www.hoc.kit.edu/nwt/) informiert rund um den Teilstudiengang. Das Modulhandbuch kann hier heruntergeladen werden und auch in einer stets aktuellen online-Version eingesehen werden. Die Website hält daneben weitere Dokumente, z.B. die Studien- und Prüfungsordnung (SPO), zum Download bereit wie auch die Kontaktinformationen der Fachstudienberatung NwT und Studiengangkoordination NwT Dr. Iris Hansjosten, die bei Fragen und Anliegen rund um das NwT-Studium gerne weiterhilft.

Das *Campus Management Portal für Studierende* (https://campus.studium.kit.edu/) bietet den Studierenden des KIT verschiedene Services zur Selbstbedienung im Bereich der Studierendenverwaltung. Dazu gehören:

- die An-/Abmeldung von Pr
 üfungen: hier kann auch der individuelle Studienverlaufsplan und -fortschritt eingesehen werden
- die Rückmeldung ins Folgesemester via SEPA Lastschriftverfahren

- die Änderung von persönlichen Daten
- der Download einer Vielzahl von Bescheinigungen (z.B. Studienbescheinigung, KVV-Bescheinigung, Notenauszug)
- Verifikation von Bescheinigungen (auch für Dritte)

Bei allgemeinen Fragen rund um das Lehramtsstudium am KIT hilft auch gerne das **Zentrum für Lehrerbildung** (http://www.hoc.kit.edu/zlb/) weiter.

Der **Prüfungsausschuss Lehramt** ist für alle rechtlichen Fragen im Zusammenhang mit Prüfungen zuständig. An diesen sind z.B. die Anträge auf Zweitwiederholung, Fristverlängerung oder Anerkennung von Leistungen zu stellen. Er entscheidet über deren Genehmigung. Die entsprechenden Anträge sind bei der Fachstudienberatung NwT bzw. beim Zentrum für Lehrerbildung erhältlich.

Ansprechperson für das Modulhandbuch: Dr. Iris Hansjosten (iris.hansjosten@kit.edu).

2. Qualifikationsziele

Die Qualifikationsziele des Teilstudiengangs orientieren sich an den Vorgaben der Rahmen-VO des Landes Baden-Württemberg für die Lehramtsstudiengänge, auf deren Grundlage das NwT-Studium (Bachelor- und Master-Teilstudiengang) konzipiert wurde. Das interdisziplinäre Masterstudium NwT baut auf den naturwissenschaftlichen und technischen Grundlagen des Bachelorstudiums NwT auf. Der Schwerpunkt liegt dabei auf der Vertiefung der technischen, ingenieurwissenschaftlichen Themengebiete. Es ist Grundlage für die Zulassung zum Vorbereitungsdienst (Referendariat).

Die Absolvent*innen beherrschen die grundlegenden Arbeits- und Erkenntnismethoden der naturwissenschaftlichen Fächer und deren technischer Anwendung. Sie sind in der Lage, Experimente selbstständig zur Untersuchung und Demonstration einzusetzen und können grundlegende Konzepte, Modellbildungen und Herangehensweisen der Technik diskutieren, in der technischen Fachsprache kommunizieren und technische Sachverhalte allgemeinverständlich darstellen. Ferner können sie Unterschiede in den Zielsetzungen und Herangehensweisen einer Problemlösung in Naturwissenschaft und Technik erläutern, zu Grunde liegende System- und Prozessabläufe identifizieren und Themengebiete aus Naturwissenschaft und Technik durch schlüssige Fragestellungen strukturieren und quervernetzen. Sie sind in der Lage, neuere Forschungsergebnisse in Übersichtsdarstellungen zu verfolgen und in Ansätzen geeignete neue Themen in den Unterricht einzubringen.

Die Absolvent*innen können die gesellschaftliche Bedeutung der Technik begründen sowie gesellschaftliche Diskussion und Entwicklungen unter technischen Gesichtspunkten bewerten. Sie verfügen über Kompetenzen zur fachbezogenen Reflexion und Kommunikation und kennen die grundlegenden Konzepte des projektorientierten NwT-Unterrichts sowie deren Chancen und Herausforderungen. Sie sind in der Lage erste eigene kompetenzorientierte NwT-Unterrichtseinheiten unter Berücksichtigung des interdisziplinären Prozess- und Systemgedankens in Ansätzen zu konzipieren, zu bewerten und ihr erworbenes fachwissenschaftliches und fachdidaktisches Wissen berufsfeldbezogen anzuwenden.

3. Studienplan

Der nachfolgend dargestellte Studienplan dient der Orientierung und gibt eine Übersicht, welche Veranstaltungen des NwT-Studiums im WS bzw. im SS stattfinden. Da im Lehramtsstudium der Besuch der Lehrveranstaltungen und das Erbringen der zugehörigen Erfolgskontrollen der beiden studierten Fächer sowie des Bildungswissenschaftlichen Begleitstudiums und das Absolvieren des Schulpraxissemesters zeitlich koordiniert werden müssen, ist es sinnvoll, sich frühzeitig über die zu belegenden Lehrveranstaltungen und zugehörigen Erfolgskontrollen zu informieren und den Semesterund Prüfungsplan in Abhängigkeit der Fächerkombination und Studienstart (WS oder SS) individuell anzupassen. Die NwT-Fachstudienberatung steht dabei gerne unterstützend zur Seite.

Zu beachten ist, dass das Schulpraxissemester nur im Wintersemester absolviert werden kann und dies bei der Planung frühzeitig berücksichtigt werden sollte!

Bei Start des Masterstudiums im WS sollte das Schulpraxissemester spätestens im dritten Fachsemester absolviert werden, bei Beginn des Masterstudiums im Sommersemester idealerweise im zweiten Fachsemester. Falls das Praxissemester die letzte Studienleistung im Studium sein sollte, so muss rechtzeitig ein Antrag beim Prüfungsausschuss gestellt werden, da das Studium systemseitig nicht mit einer Studienleistung enden darf.

Detaillierte Informationen zum Schulpraxissemester gibt es im Modulhandbuch Bildungswissenschaftliches Begleitstudium sowie auf der ZLB-Homepage unter https://www.hoc.kit.edu/zlb/849.php#tabpanel-888.

Sie sind sich noch unsicher, an welche Schule Sie fürs Schulpraxissemester am besten gehen sollen? Die Studiengangkoordination NwT Iris Hansjosten hilft gerne weiter.

3.1 Empfehlungen für das NwT-Studium

Im Modul "Vertiefungspraktikum NwT" werden für die praktische Teilleistung verschiedene Praktika angeboten. Bei der Wahl ist zu beachten, dass das aus dem Bereich Elektro- und Informationstechnik angebotene Praktikum "Informationstechnik I" nur in Kombination mit dem Wahlpflichtmodul "Informationstechnik" gewählt werden kann. Die Praktika "Biomechanik am Design in der Natur für NwT-Lehramt" und "Laborpraktikum Bauingenieurwesen" können unabhängig der Wahlpflichtmodule belegt werden. Die NwT-Fachstudienberatung unterstützt gerne bei der Wahl und steht für Rückfragen zur Verfügung.

Wahlpflichtmodule: Es müssen zwei Wahlpflichtmodule aus zwei unterschiedlichen der vier angebotenen Bereiche (Bauingenieurwesen, Verfahrenstechnik, Elektro- und Informationstechnik, Maschinenbau) im Umfang von insgesamt 16 LP belegt werden.

3.2 Übersicht der Module, Teilleistungen und zugehörigen Lehrveranstaltungen

Pflichtmodule:

Fäcl	Fächerkombination NwT/Biologie/Chemie/Geographie/Physik										
	Modul/Teilleistung	Veranstaltung			ws			SS			
	-		Art	SWS	EK	LP	SWS	EK	LP		
	M-CIWVT-104204 - Fachdidaktik NwT III										
	T-CIWVT-109159	Projektorientierter Unterricht am Beispiel des Mikrocontrollers LV-Nr. 9080100	S				2	PAA	4		
	T-CIWVT-109160	Seminar zur Vor- und Nach- bereitung des Praxissemesters	S				2	SL	3		
	M-CIWVT-104205 - Ve	ertiefungspraktikum NwT									
ᇷ	T-CIWVT-109161	Sicherheit und Unfallschutz LV-Nr. 2200020	S	2	SL	2					
rei	Wahl eines Praktikum	s aus folgenden drei Angeboten:									
Pflichtbereich	T-BGU-103403	Laborpraktikum [bauiBGW6- LABOR] LV-Nr. 6200118	Р	2	SL	2					
	T-CIWVT-111945	Biomechanik am Design in der Natur für NwT-Lehramt	Р				2	SL	2		
	T-ETIT-109301	Informationstechnik I - Praktikum LV-Nr. 2311653 - nur in Kombination mit M-ETIT- 104765 - Wahlpflicht Elektro- und Informationstechnik - Informationstechnik	Р	2	SL	2					
Sum	Summe				2 SL	2 + 2	4	1 PAA, 1 SL + 1 SL	7 + 2		

Abkürzungen:

WS: Wintersemester; SS: Sommersemester; FS: Fachsemester; V: Vorlesung; Ü: Übung; S: Seminar; P: Praktikum, A: Arbeit; SWS: Semesterwochenstunden; EK: Erfolgskontrolle; LP: Leistungspunkte; SP: schriftliche Prüfung; MP: Mündliche Prüfung; SL: Studienleistung; PAA: Prüfungsleistung anderer Art; FD: Fachdidaktik

Wahlpflichtmodule und fakultativ Masterarbeit NwT:

		ologie/Chemie/Geographie/Physik en aus zwei unterschiedlichen der vier B	ereich	e (Bau	ingeni	eurwe	sen,		
		ektro- und Informationstechnik, Maschi		-	_				
	Modul/Teilleistung	Veranstaltung			WS			SS	
	_		Art	SWS	EK	LP	SWS	EK	L
		lpflicht Bauingenieurwesen - Holzbau	,			,		,	
	T-BGU-107463 - Grundlagen des Holzbaus	Grundlagen des Holzbaus LV-Nr. 6200507 und 6200508	V/Ü	2/1	SP	4			
	T-BGU-109476 - Projektarbeit Holzbau	Projektarbeit "Holzbau"	Α					PAA	
	M-BGU-104622 - Wah	lpflicht Bauingenieurwesen - Wasserbau	ı	<u> </u>			•		
	T-BGU-109477 – Prüfungsvorleistung Einführung in die Hydromechanik	Einführung in die Hydromechanik LV-Nr. 6221814	Р					SL	(
	T-BGU-109478 – Einführung in die Hydromechanik	Einführung in die Hydromechanik LV-Nr. 6221814	V				2	МР	
	T-BGU-109479 – Wasserbau und Wasserwirtschaft	Wasserbau und Wasserwirtschaft LV-Nr. 6200511 und 6200512	V/Ü	2/1	MP	4			
ĺ	M-BGU-104623 - Wah	lpflicht Bauingenieurwesen - Hydrologie	?		_				
	T-BGU-109477 – Prüfungsvorleis-tung Einführung in die Hydromechanik	Einführung in die Hydromechanik LV-Nr. 6221814	Р					SL	
	T-BGU-109478 – Einführung in die Hydromechanik	Einführung in die Hydromechanik LV-Nr. 6221814	V				2	MP	4
	T-BGU-109480 - Hydrologie	Hydrologie LV-Nr. 6200513 und 6200514	V/Ü	2/1	MP	4			
	M-CIWVT-104479 - W	ahlpflicht Verfahrenstechnik - Grundlage	en Leb	ensmit	telverf	ahren	stechn	ik	
	T-CIWVT-100152	Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel LV-Nr. 22214	V				2	SP	
	T-CIWVT-111535	Lebensmittelkunde und -funktionalität LV-Nr. 22219	Р	2	MP	3			
	T-CIWVT-111435 oder T-CIWVT- 111433	Extrusionstechnik LV-Nr. 22246 oder Trocknen von Dispersionen LV-Nr. 22226	V				1	SP	

NA advil /Taillaiatuus	Voyanataltuna		WS SWS EK LP		SS				
Modul/Teilleistung	Veranstaltung	Art			LP	sws	EK	LP	
M-ETIT-104765 - Wahlpflicht Elektro- und Informationstechnik - Informationstechnik									
T-ETIT-109300	Informationstechnik I LV-Nr. 2311651 und 2311652	v/ü				2/1	SP	4	
T-ETIT-109319	Informationstechnik II und Automatisierungstechnik LV-Nr. 2311654 und 2311655	V/Ü				2	SP	4	
M-ETIT-104766 – Wa	hlpflicht Elektro- und Informationstechn	ik - Elel	ktrotec	hnik					
T-ETIT-100784	Hybride und elektrische Fahrzeuge LV-Nr. 2306321	v/ü	2/1	SP	4				
T-ETIT-101924	Erzeugung elektrischer Energie LV-Nr. 2307356	V	2	MP	4				
M-MACH-104070 - W	ahlpflicht: Technik erleben und vermitte	ln							
T-MACH-108698	Mechatronische Systeme und Produkte LV-Nr. 2303161 und 2303003	v/ü	2/1		2				
T-MACH-108694	Workshop Mechatronische Systeme und Produkte LV-Nr. 2145162	Р	2	MP ¹⁾	2				
T-MACH-108697	Kooperation in interdisziplinären Teams LV-Nr. 2145166	Р			2				
T-MACH-108699	Führung von Teams (NwT) LV-Nr. 2145163	S	2		2				
M-CIWVT-104480 - M	lasterarbeit NwT								
T-CIWVT-109162 - Ma	asterarbeit NwT ²⁾	Α			17			17	
me				max 2 SP, 2 MP + 1 A	max 16 + 17		max 2 SP, 1 MP, 1 PAA + 2 SL+1 A	max 16 +17	

¹⁾ Die Erfolgskontrolle zum Wahlpflichtmodul "Technik erleben und vermitteln" erfolgt in einer gemeinsamen mündlichen Prüfung.

Abkürzungen:

WS: Wintersemester; SS: Sommersemester; FS: Fachsemester; V: Vorlesung; Ü: Übung; S: Seminar; P: Praktikum, A: Arbeit; SWS: Semesterwochenstunden; EK: Erfolgskontrolle; LP: Leistungspunkte; SP: schriftliche Prüfung; MP: Mündliche Prüfung; SL: Studienleistung; PAA: Prüfungsleistung anderer Art; FD: Fachdidaktik

 $^{^{2)}}$ Die Masterarbeit kann in NwT, dem zweiten Fach oder dem Bildungswissenschaftlichen Begleitstudium angefertigt werden, i.d.R. im Winter- oder Sommersemester.

Hinweis: Wenn Sie das Schulpraxissemester im ersten Fachsemester des Masterstudiums absolvieren möchten, beachten Sie bitte, dass Sie sich bereits zu Beginn des vorangehenden Sommersemesters dazu anmelden müssen. Diese Vor-Anmeldung erfolgt über das Zentrum für Lehrerbildung und wird i.d.R. Anfang Mai auf der Website des ZLB freigeschaltet. Weitere Informationen dazu finden Sie online sowie im Modulhandbuch des Bildungswissenschaftlichen Begleitstudiums.

Bei Fragen zur Modulwahl und Erstellung Ihres individuellen Studienablaufplans hilft die NwT-Studiengangkoordination Dr. Iris Hansjosten gerne weiter.

3.3 Erfolgskontrollen, An/Abmelden von Prüfungen, Wahl und Abschluss eines Moduls

Jedes Modul besteht aus einer oder mehreren aufeinander bezogenen Lehrveranstaltungen (Teilleistungen) und wird durch eine oder mehrere Erfolgskontrollen abgeschlossen. Erfolgskontrollen sind entweder benotet (Prüfungsleistungen) oder unbenotet (Studienleistungen). Prüfungsleistungen können schriftlich, mündlich oder anderer Art sein (z.B. benotete Hausarbeiten, Seminare, Laborpraktika, etc.).

Die An- und Abmeldung zu Modul(teil)prüfungen erfolgt online über das Studierendenportal (Campus Managementsystem). Die An- und Abmeldefristen werden rechtzeitig in den Lehrveranstaltungen und/oder auf den Webseiten der Lehrveranstaltungen bzw. der zugehörigen Institute bekanntgegeben. Studierende werden dazu aufgefordert, sich vor dem Prüfungstermin zu vergewissern, dass sie im System tatsächlich den Status "angemeldet" haben (z.B. Ausdruck). In Zweifelsfällen sollte die NwT-Fachstudienberatung kontaktiert werden. Die Teilnahme an einer Prüfung ohne Online-Anmeldung ist nicht gestattet, in Ausnahmefällen kann eine Anmeldung auch schriftlich erfolgen.

Jedes Modul und jede Prüfung darf nur jeweils einmal belegt werden (vgl. SPO § 7 Abs. 5). Die verbindliche Entscheidung über die Wahl eines Moduls trifft die/der Studierende in dem Moment, in dem er sich zur entsprechenden Prüfung, auch Teilprüfung, anmeldet (vgl. SPO § 5 Abs. 2). Die/der Studierende kann diese verbindliche Wahl nur durch eine fristgerechte Abmeldung von der Prüfung aufheben. Nach der Teilnahme an der Prüfung kann die gewählte Erfolgskontrolle nur noch auf Antrag an den Prüfungsausschuss abgewählt und durch eine andere ersetzt werden. Ein Modul ist abgeschlossen, wenn alle dem Modul zugeordneten Erfolgskontrollen bestanden sind, d.h. entweder als Prüfungsleistung mit mindestens der Note "4,0" oder als Studienleistung mit "bestanden" bewertet wurden.

Die Notenskala am KIT gliedert sich folgendermaßen:

 1,0 - 1,5
 sehr gut

 1,6 - 2,5
 gut

 2,6 - 3,5
 befriedigend

 3,6 - 4,0
 ausreichend

 5,0
 nicht bestanden

be bestanden (ohne Note)
nb nicht bestanden (ohne Note)

Eine Abstufung für die differenzierte Bewertung von Leistungen wird durch ,3 und ,7 erreicht. Noten besser als 1,0 und schlechter als 4,0 (z.B. 4,3) existieren nicht.

3.4 Wiederholung von Prüfungen, Zweitwiederholung, Fristen

Wird eine Prüfung (schriftlich, mündlich oder anderer Art) nicht bestanden, kann diese grundsätzlich einmal wiederholt werden (Wiederholungsprüfung) (vgl. SPO § 8). Bei Nichtbestehen einer schriftlichen Wiederholungsprüfung findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Wiederholungsprüfung statt. Diese ist Teil der Wiederholungsprüfung und wird nicht eigenständig bewertet. Die Note einer Wiederholungsprüfung kann nach einer mündlichen Nachprüfung bestenfalls 4,0 (bestanden) betragen. Wird auch die mündliche Nachprüfung nicht bestanden (Note 5,0) ist die Prüfungsleistung "endgültig nicht bestanden" und der Prüfungsanspruch für den Teilstudiengang ist verloren. Eine Teilnahme an weiteren Prüfungen in diesem Teilstudiengang ist dann nicht mehr möglich.

Um den Prüfungsanspruch wieder herstellen zu können und unter Vorbehalt an weiteren Prüfungen teilnehmen zu können, kann ein **Antrag auf Zweitwiederholung** gestellt werden (vgl. SPO § 8 Abs. 8). Dieser sollte unmittelbar nach Verlust des Prüfungsanspruchs über die NwT-Fachstudienberatung an den Prüfungsausschuss Lehramt gestellt werden. Durch Genehmigung eines Antrags auf Zweitwiederholung können weitere Prüfungen unter Vorbehalt abgelegt werden. Studierende bekommen diese aber im Erfolgsfall erst angerechnet, wenn die endgültig nicht bestandene Prüfung bestanden wurde. Der Prüfungsanspruch gilt erst dann als wiederhergestellt, wenn die nicht bestandene Prüfung bestanden ist.

Studienleistungen (unbenotete Erfolgskontrolle) können beliebig oft wiederholt werden, falls in der Modul- oder Teilleistungsbeschreibung keine anderweitigen Regelungen vorgesehen sind.

Die **Regelstudienzeit** im Studiengang Lehramt an Gymnasien mit Abschluss M.Ed. beträgt **vier Semester**, die zulässige **Höchststudiendauer sieben Semester**. Sind bis zum Ende des Prüfungszeitraums des siebten Fachsemesters nicht alle Prüfungsleistungen, inkl. Masterarbeit, erfolgreich abgelegt, geht der Prüfungsanspruch im jeweiligen Teilstudiengang verloren.

<u>Bitte beachten:</u> Durch die Pandemie-bedingte Situation können aktuell noch Ausnahmeregelungen gelten, was die Fristen für Orientierungsprüfung und Studienhöchstdauer und den Umfang von Mastervorzugleistungen betrifft. Bitte informieren sich dazu auf den zentralen FAQ-Seiten des KIT "Fragen und Antworten zum Umgang mit dem Coronavirus" unter https://www.kit.edu/kit/25911.php.

3.5 Masterarbeit

Bitte wenden Sie sich zur Anmeldung der Masterarbeit an die Koordination NwT (Iris Hansjosten).

Die Masterarbeit kann in einem der beiden Fächer oder dem Bildungswissenschaftlichen Begleitstudium angefertigt werden. Zur Masterarbeit kann zugelassen werden, wer min. 20 LP im dem Fach, in dem die Masterarbeit angefertigt wird bzw. dem Bildungswissenschaftlichen Begleitstudium, erbracht hat. Die Masterarbeit hat einen Umfang von 17 LP, das entspricht einer Arbeitsbelastung von ca. 13 Wochen bei Vollzeit. Die maximale in der SPO angegebene Bearbeitungsdauer beträgt jedoch 6 Monate, damit parallel zur Masterarbeit noch zeitlicher Spielraum für das Absolvieren von Lehrveranstaltungen besteht. Wird die Masterarbeit im Fach NwT angefertigt, kann sie an einer der vier am NwT-Studium beteiligten Ingenieurfakultäten angefertigt werden: Die KIT-Fakultät für Bau-, Geo- und Umweltwissenschaften (BGU), Chemieingenieurwesen und Verfahrenstechnik Elektrotechnik- und Informationstechnik (ETIT) oder Maschinenbau (MACH). Die Masterarbeit kann von Hochschullehrer*innen, habilitierten Wissenschaftler*innen und leitenden Wissenschaftler*innen gemäß § 14 Abs. 3 Ziff. 1 KITG der jeweiligen Fakultät vergeben werden. Darüber hinaus kann der Prüfungsausschuss Lehramt weitere Prüfende (s. SPO § 17) zur Vergabe des Themas berechtigen. Bei der Themenstellung können die Wünsche der/s Studierenden berücksichtigt werden. Alle Details über den Ablauf und die Anforderungen an die Masterarbeit liegen in den Händen der Betreuer*innen. Die Masterarbeit soll zeigen, dass die Studierenden in der Lage sind ein Problem aus ihrem Fach bzw. dem Bildungswissenschaftlichen Begleitstudium selbständig und in begrenzter Zeit wissenschaftlichen Methoden zu bearbeiten.

3.6 Zusatzleistungen

Im Lehramtsstudiengang mit Abschluss M.Ed. können bis zu **30 LP** durch **Zusatzleistungen** aus dem gesamten Angebot des KIT erworben werden. Eine Zusatzleistung ist eine freiwillige, zusätzliche Prüfung, deren Ergebnis nicht in die Berechnung der Gesamtnote eingeht (vgl. SPO § 15). Sie muss als solche angemeldet werden. Auf Antrag an den Prüfungsausschuss kann deren Zuordnung nachträglich geändert werden. Zur Übermittlung der Note ist dem Prüfer vor der Prüfung der entsprechende Prüfungszettel auszuhändigen. Diesen erhalten Sie auf der Website des Zentrums für Lehrerbildung.

Bei Fragen zu Zusatzleistungen wenden Sie sich bitte an die NwT-Koordination, ebenso im Falle von Problemen bei der Leistungsverbuchung.

3.7 Studierende mit Behinderung oder chronischer Erkrankung

Studierende mit Behinderung oder chronischer Erkrankung haben die Möglichkeit, bevorzugten Zugang zu teilnahmebegrenzten Lehrveranstaltungen zu erhalten, die Reihenfolge für das Absolvieren bestimmter Lehrveranstaltungen entsprechend ihrer Bedürfnisse anzupassen, oder Prüfungen in einzelnen Modulen in individuell gestalteter Form oder Frist abzulegen (Nachteilsausgleich, vgl. SPO § 13). Die/der Studierende hat die entsprechenden Nachweise vorzulegen. Die/der Studierende stellt dazu einen formlosen Antrag mit entsprechenden Nachweisen an den Prüfungsausschuss Lehramt. Der Prüfungsausschuss legt in Abstimmung mit der/dem Prüfenden die Einzelheiten für die entsprechende Prüfung fest und informiert die/den Studierenden rechtzeitig.

3.8 Anrechnung und Anerkennung von Studien- und Prüfungsleistungen

Studien- und Prüfungsleistungen, die nicht in diesem Modulhandbuch (Studienplan, Module) beschrieben sind und innerhalb oder außerhalb des Hochschulsystems (z.B. in vorausgegangenen Studien) erbracht wurden, können grundsätzlich auf Antrag der Studierenden an den Prüfungsausschuss Lehramt unter den Rahmenbedingungen der SPO § 18 anerkannt werden. Die Anerkennung von Leistungen erfolgt über das entsprechende Anerkennungsformular, das bei der Fachstudienberatung NwT erhältlich ist. Anerkannt werden können Leistungen, die im Wesentlichen deckungsgleich mit Modulen aus dem Studienplan (insbesondere Ziele und Qualifikationen) sind. Dabei wird kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorgenommen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung werden die Grundsätze des ECTS-Systems herangezogen. Studierende, die neu in den Masterstudiengang Lehramt an Gymnasien immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen.

Um die Anerkennung von Leistungen bei geplanten Auslandsaufenthalten sicherzustellen ist die Absprache von geplanten Leistungen in einem Learning Agreement schriftlich festzuhalten. Kontaktieren Sie dazu bitte die NwT-Koordination. Informationen zur Vorbereitung und Durchführung von Studium und Praktikum im Ausland sowie zu den Serviceangeboten des International Students Office (IStO) des KIT finden Sie unter: http://www.intl.kit.edu/ostudent/.

4. Aktuelle Änderungen und Hinweise

M-CIWVT-104204 - Fachdidaktik NwT III:

Die Teilleistung "T-CIWVT-110914 – Seminar zur Vor- und Nachbereitung des Schulpraxissemesters" wird ab dem Sommersemester 2022 durch Teilleistung "T-CIWVT-111946 – Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht" ersetzt.

M-CIWVT-104205 - Vertiefungspraktikum NwT:

Die Teilleistung "T-ETIT-109734 – Energietechnisches Praktikum" entfällt. Ab dem Sommersemester 2022 wird Teilleistung "T-CIWVT-111945 – Biomechanik am Design in der Natur für NwT-Lehramt" neu angeboten.

Wahlpflichtmodul Chemieingenieurwesen/Verfahrenstechnik:

M-CIWVT-105866 "Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik – Vertiefung Lebensmittelverfahrenstechnik" ersetzt M-CIWVT-104479 "Wahlpflicht Verfahrenstechnik - Grundlagen Lebensmittelverfahrenstechnik". Studierende, die ihr Studium vor WS21/22 begonnen haben und noch Modul M-CIWVT-104479 absolvieren möchten, kontaktieren bitte die Studiengangkoordination NwT.

Alle Angaben in diesem Modulhandbuch stellen eine unverbindliche Informationsquelle dar und können keine Gewähr auf Vollständigkeit der Inhalte geben.

5 Aufbau des Studiengangs

Besonderheiten zur Wahl

Wahlen auf Studiengangsebene müssen vollständig erfolgen.

Masterarbeit (Wahl: zwischen 0 und 1 Bestandteilen)					
Masterarbeit Die Erstverwendung ist ab 01.05.2021 möglich. Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.					
Pflichtbestandteile					
Wissenschaftliches Hauptfach Naturwissenschaft und Technik	27 LP				

5.1 Masterarbeit

Hinweise zur Verwendung

Die Erstverwendung ist ab 01.05.2021 möglich.

Pflichtbestandteile						
	Modul Masterarbeit - Naturwissenschaft und Technik	17 LP				
	Dieses Modul fließt an dieser Stelle nicht in die Notenberechnung des übergeordneten Bereichs ein.					

5.2 Wissenschaftliches Hauptfach Naturwissenschaft und Technik

Leistungspunkte

27

Wahlinformationen

Wahlpflichtmodule: Es müssen zwei Wahlpflichtmodule aus zwei unterschiedlichen der vier angebotenen Bereiche (Bauingenieurwesen, Verfahrenstechnik, Elektro- und Informationstechnik, Maschinenbau) im Umfang von insgesamt 16 LP belegt werden.

Masterarbeit (Wah	Masterarbeit (Wahl: zwischen 0 und 1 Bestandteilen)							
M-CIWVT-104480	Modul Masterarbeit - Naturwissenschaft und Technik Die Erstverwendung ist bis 30.04.2021 möglich. Dieses Modul fließt an dieser Stelle nicht in die Notenberechnung des übergeordneten Bereichs ein.	17 LP						
Pflichtbestandteile								
M-CIWVT-104204	Fachdidaktik NwT III	7 LP						
M-CIWVT-104205	Vertiefungspraktikum NwT	4 LP						
Wahlpflichtmodule	e I und II (Wahl: max. 16 LP)							
M-CIWVT-104479	Wahlpflicht Verfahrenstechnik - Grundlagen Lebensmittelverfahrenstechnik Die Erstverwendung ist bis 30.09.2021 möglich.	8 LP						
M-CIWVT-105866	Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik - Vertiefung Lebensmittelverfahrenstechnik Die Erstverwendung ist ab 01.10.2021 möglich.	8 LP						
M-MACH-104070	Wahlpflicht Maschinenbau - Technik erleben und vermitteln	8 LP						
M-BGU-104518	Wahlpflicht Bauingenieurwesen - Holzbau	8 LP						
M-BGU-104622	Wahlpflicht Bauingenieurwesen - Wasserbau	8 LP						
M-BGU-104623	Wahlpflicht Bauingenieurwesen - Hydrologie	8 LP						
M-ETIT-104765	Wahlpflicht Elektro- und Informationstechnik - Informationstechnik	8 LP						
M-ETIT-104766	Wahlpflicht Elektro- und Informationstechnik - Elektrotechnik	8 LP						

6 Module

6.1 Modul: Fachdidaktik NwT III [M-CIWVT-104204]

Verantwortung: Prof. Dr. Gerd Gidion

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	3

Pflichtbestandteile									
T-CIWVT-109159	Projektorientierter Unterricht am Beispiel des Mikrocontrollers	4 LP	Gidion, Sexauer						
T-CIWVT-111946	Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht	3 LP							

Erfolgskontrolle(n)

Teilleisung T-CIWVT-109159 - Projektorientierter Unterricht am Beispiel des Mikrocontrollers: Prüfungsleistung anderer Art

Teilleisung T-CIWVT-111946 - Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht: Prüfungsleistung anderer Art

Details zu den Erfolgskontrollen siehe jeweilige Teilleistung.

Voraussetzungen

Keine

Qualifikationsziele

Projektorientierter Unterricht am Beispiel des Mikrocontrollers:

Die Studierenden können grundlegende Steuerungs- und Regelungsaufgaben mit einem Mikrocontroller umsetzen: Sie

- · erlangen ein Grundverständnis der Digitalelektronik
- können Grundprinzipien elektronischer Schaltungen und deren Basisbauteile benennen und diese anwendungsorientiert zum Lösen von Aufgaben anwenden
- können einen Mikrocontroller programmieren
- · analysieren Probleme, finden Fehler und können diese zielgerichtet beheben

Die Studierenden können Mikrocontroller im Kontext projektorientierten NwT-Unterrichts einsetzen und deren Einsatz reflektieren: Sie

- sind in der Lage die Komplexität entsprechender Mikrocontroller-Aufgaben abzuschätzen
- · können kontextbezogen angemessene Lösungsansätze zu neuen Aufgaben erarbeiten
- erkennen naturwissenschaftliche Bezüge im Kontext technischer Elemente und Aufgabenstellungen
- · verwenden Mikrocontroller in einer projektartigen Unterrichtssequenz
- kennen die Theorien des konstruktivistischen und differenzierten Lernens und können diese für die Konzeption von Unterrichtseinheiten heranziehen

Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht::

Die Studierenden

Inhalt

Projektorientierter Unterricht am Beispiel des Mikrocontrollers:

- · Grundlagen der Digitalelektronik: Schaltungen, Bauteile
- Grundlagen Aufbau und Funktionsweise eines Mikrocontroller
- Programmierung eines Mikrokontrollers
- Praktische Umsetzung grundlegender Steuerungs- und Regelungsaufgaben
- · Methoden zur Gestaltung von Blended learning-Veranstaltungen und projektorientiertem Unterricht

Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht:

Zusammensetzung der Modulnote

Die Modulnote ist der nach Leistungspunkten gewichtete Durchschnitt aus den Noten der Teilprüfungen.

Arbeitsaufwand

Teilleisung T-CIWVT-109159 - Projektorientierter Unterricht am Beispiel des Mikrocontrollers:

Summe: 120 Studnden Präsenzzeit: 30 Stunden

Projektarbeit und Selbststudium (inkl. Erbringung der Erfolgskontrolle): 90 Stunden

T-CIWVT-111946 - Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht:

Summe: 90 Stunden Präsenzzeit: 30 Stunden

Vor- und Nachbereitung (inkl. Erbringung der Erfolgskontrolle): 60 Stunden

Lehr- und Lernformen

Blended learning-Seminar, Projektarbeit, Selbststudium

6.2 Modul: Modul Masterarbeit - Naturwissenschaft und Technik [M-CIWVT-104480]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Masterarbeit

Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Masterarbeit) (EV bis 30.04.2021)

Leistungspunkte
17Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile			
T-CIWVT-109162	Masterarbeit - Naturwissenschaft und Technik	17 LP	

Erfolgskontrolle(n)

schriftliche Arbeit und abschließender Vortrag

Voraussetzungen

Für die Zulassung zur Masterarbeit müssen mindestens 20 LP im Teilstudiengang NwT erbracht worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- In den folgenden Bereichen müssen in Summe mindestens 20 Leistungspunkte erbracht worden sein:
 - Wissenschaftliches Hauptfach Naturwissenschaft und Technik

Qualifikationsziele

Die Masterarbeit soll zeigen, dass die/der Studierende in der Lage ist, ein Problem aus dem betreffenden wissenschaftlichen Hauptfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten. Hierzu kann sie/er Literatur selbstständig auswählen, eigene Lösungswege finden, die Ergebnisse kritisch evaluieren und diese in den Stand der Forschung einordnen. Sie/Er ist weiterhin in der Lage, die wesentlichen Inhalte und Ergebnisse übersichtlich und klar strukturiert in einer schriftlichen Arbeit zusammenzufassen und in einem kurzen Vortrag zusammenfassend vorzustellen.

Inhalt

Die Masterarbeit ist eine eigenständige, schriftliche Arbeit und beinhaltet die theoretische und/oder experimentelle Bearbeitung einer komplexen Problemstellung aus einem Teilbereich des NwT-Studiums nach wissenschaftlichen Methoden. Der thematische Inhalt der Masterarbeit ergibt sich durch die Wahl des Fachgebiets, in dem die Arbeit angefertigt wird. Der/Die Studierendedarf Vorschläge für die Themenstellung einbringen.

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus der Bewertung der Masterarbeit und des abschließenden Vortrags, der in die Bewertung einfließt.

Anmerkungen

Die maximale Bearbeitungsdauer beträgt sechs Monate. Thema und Aufgabenstellung sind an den vorgesehenen Umfang anzupassen. Der Prüfungsausschuss legt fest, in welchen Sprachen die Masterarbeit geschrieben werden kann. Auf Antrag der/s Studierenden kann der/die Prüfende genehmigen, dass die Masterarbeit in einer anderen Sprache als Deutsch geschrieben wird

Bitte wenden Sie sich zur Anmeldung der Masterarbeit an die NwT-Studiengangskoordination.

Arbeitsaufwand

Summe: 510 Stunden

Empfehlungen

Alle fachlichen und überfachlichen notwendigen Qualifikationen zur Bearbeitung des gewählten Themas und der Anfertigung der Masterarbeit sollten erlangt worden sein.

Lehr- und Lernformen

Abschlussarbeit

Level

4

Version

3

6.3 Modul: Vertiefungspraktikum NwT [M-CIWVT-104205]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Pflichtbestandteil)

LeistungspunkteNotenskalaTurnusDauerSprache4ZehntelnotenJedes Semester2 SemesterDeutsch

Wahlinformationen

Bitte bei der Wahl der praktischen Teilleistung beachten:

- T-CIWVT-111945 Biomechanik am Design in der Natur für NwT-Lehramt kann unabhängig der gewählten Wahlpflichtmodule belegt werden.
- T-BGU-103403 Laborpraktikum Bauingenieure kann unabhängig der gewählten Wahlpflichtmodule belegt werden.
- T-ETIT-109301 **Informationstechnik I Praktikum** kann <u>nur</u> in Kombination mit dem **Wahlpflichtmodul** M-ETIT-104765 Wahlpflicht Elektro- und Informationstechnik **Informationstechnik** belegt werden!

Praktisch bedeutet dies, dass z.B. die Teilleistung Biomechanik oder Laborpraktikum Bauingenieure gewählt werden kann und optional ein Wahlpflichtmodul ETIT. Im Gegensatz dazu muss jedoch bei Wahl des Informationstechnik I Praktikums das Wahlpflichtmodul Informationstechnik gewählt werden.

Bitte zur Anmeldung des Laborpraktium Bauingenieure beachten:

Es ist eine rechtzeitige Anmeldung über die entsprechende ILIAS-Gruppe zwingend erforderlich! Der Link zur ILIAS-Gruppe ist idR Anfang des Wintersemesters im Vorlesungsverzeichnis hinterlegt.

Bei Fragen wenden Sie sich bitte an die NwT-Studiengangkoordination.

Besonderheiten zur Wahl

Wahlen in diesem Modul sind genehmigungspflichtig.

Pflichtbestandteile						
T-CIWVT-109161	Sicherheit und Unfallschutz	2 LP				
Wahlpflicht Praktiku	Wahlpflicht Praktikum (Wahl: mind. 2 LP)					
T-CIWVT-111945	Biomechanik am Design in der Natur für NwT-Lehramt	2 LP				
T-BGU-103403	Laborpraktikum	2 LP	Vortisch			
T-ETIT-109301	Informationstechnik I - Praktikum	2 LP	Sax			

Erfolgskontrolle(n)

Sicherheit und Unfallschutz: Studienleistung (unbenotet)

Gewähltes Praktikum:

Biomechanik am Design in der Natur für NwT-Lehramt:

Studienleistung (unbenotet): Aufgabe zur Bauteiloptimierung

Laborpraktikum:

Teilleistung T-BGU-103403 mit Studienleistung (unbenotet), Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Informationstechnik I - Praktikum:

Studienleistung (unbenotet): Projektdokumentationen und Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum

Voraussetzungen

Keine

Qualifikationsziele

Sicherheit und Unfallschutz:

Die Studierenden kennen die Richtlinie zur Sicherheit im Unterricht (RiSU) der Kultusministerkonferenz (KMK), die rechtlichen Rahmenbedingungen zum sicheren Arbeiten im Unterricht und können diese im Hinblick auf den NwT-Unterricht anwenden. Sie können schulrelevante Sicherheitsaspekte des NwT-Unterrichts darlegen und sind fähig Risiken beim praktischen Arbeiten zu erkennen. Sie können ferner Schüler*innen in Abhängigkeit von Klassenstufe und -größe richtig einschätzen, Fehleinschätzungen und Verhalten der Schüler*innen antizipieren und dadurch Gefahrensituationen vermeiden. Die Studierenden sind sich ihrer Vorbildfunktion als zukünftig in der Schule lehrende und handelnde Person bewusst und können sowohl Verhaltens- als auch Einstellungs- und Bewusstseinsänderung im Sinne von Sicherheits- und Umweltbewusstsein pädagogisch umsetzen.

Gewähltes Praktikum:

Biomechanik am Design in der Natur für NwT-Lehramt:

Laborpraktikum:

Die Studierenden können Laborversuche durchführen und beachten dabei wissenschaftliche Grundsätze. Je nach den ausgewählten Versuchen können sie die dabei verwendeten Messmethoden einsetzen und sind in der Lage, Messergebnisse zu analysieren, zu beschreiben und kritisch zu hinterfragen.

Informationstechnik I - Praktikum:

Durch die Teilnahme am Praktikum Informationstechnik können die Studierenden komplexe programmiertechnische Probleme in einfache und übersichtliche Module zerlegen und dazu passende Algorithmen und Datenstrukturen entwickeln, sowie diese mit Hilfe einer Programmiersprache in ein ausführbares Programm umsetzen.

Inhalt

Sicherheit und Unfallschutz:

- Richtlinie zur Sicherheit im Unterricht (RiSU) der KMK und weitere rechtliche Rahmenbedingungen:
 - Gefährdungsbeurteilungen
 - · Arbeitssicherheit, Gefahrensätze
 - · Einrichten von Arbeitsplätzen und Laboren
 - Umweltschutz
 - Erste Hilfe und Notfalleinrichtungen, Festlegung von Schutz- und Hygienemaßnahmen
 - · Erstellung von Betriebsanweisungen
 - · Unterweisung von Schüler*innen und Lehrkräften
 - Anforderungen für spezielle Tätigkeiten
- zielgruppenspezifisches und altersgerechtes Einschätzen von Schüler*innen hinsichtlich Sicherheit und Unfallschutz im Unterricht

Gewähltes Praktikum:

Biomechanik am Design in der Natur für NwT-Lehramt:

Vorlesung:

- · Mechanik und Wuchsgesetze der Bäume
- · Körpersprache der Bäume
- · Versagenskriterien und Sicherheitsfaktoren
- · Computersimulation adaptiven Wachstums
- · Kerben und Schadensfälle
- · Bauteiloptimierung nach dem Vorbild der Natur
- Computerfreie Bauteiloptimierung
- · Universalformen der Natur
- · Optimale Faserverläufe in Natur und Technik

Exkursion:

Erkennen und Bewerten der Wuchsgesetze, Schadenssymptome etc. werden an einem Lehrpfad direkt an Bäumen geübt und das Verständnis der Mechanik vertieft.

<u>Workshop</u>

Einführung in die Finite Elemente Methode (FEM) mit der Software ANSYS Mechanical APDL

Begleitet von praktischen Versuchen und FEM-Analysen werden folgende Themen vermittelt:

- Materialermüdung
- · Kerbspannungen und Spannungssingularitäten
- · Formoptimierung mit der Methode der Zugdreiecke

Laborpraktikum:

aus allen Schwerpunkten werden in mehreren Blöcken Laborpraktika angeboten:

- · Konstruktiver Ingenieurbau
- Wasser und Umwelt
- · Mobilität- und Infrastruktur
- · Technologie und Management im Baubetrieb
- · Geotechnisches Ingenieurwesen

Informationstechnik I - Praktikum:

Bei der Umsetzung in einen strukturierten und lauffähigen Quellcode, unter Einhaltung von vorgegebenen Qualitätskriterien, wird das Schreiben komplexer C/C++-Codeabschnitte und der Umgang mit einer integrierten Entwicklungsumgebung trainiert. Die Implementierung erfolgt auf einem Microcontrollerboard, welches bereits aus anderen Lehrveranstaltungen bekannt ist. Die Bearbeitung des Projektes erfolgt in kleinen Teams, die das Gesamtprojekt in individuelle Aufgaben zerlegen und selbstständig bearbeiten. Hierbei werden Inhalte aus Vorlesung und Übung wieder aufgegriffen und auf konkrete Problemstellungen angewendet. Am Ende des Praktikums soll jedes Projektteam den erfolgreichen Abschluss seiner Arbeit auf der "TivSeg Plattform" demonstrieren.

Zusammensetzung der Modulnote

Die Modulnote ist der nach Leistungspunkten gewichtete Durchschnitt aus den Noten der Teilprüfungen.

Anmerkungen

Biomechanik am Design in der Natur für NwT-Lehramt:

Blockveranstaltung, bestehend aus Vorlesung, Exkursion und Workshop

Laborpraktikum:

Für einige Versuche sind Gruppengrößen vorgegeben (Mindest- bzw. Maximalteilnehmerzahl).

Arbeitsaufwand

Sicherheit und Unfallschutz:

Summe: 60 Stunden Präsenzzeit: 20 Stunden

Selbststudium (Vor-, Nachbereitung, inkl. Erbringung der Erfolgskontrolle): 40 Stunden

Gewähltes Praktikum:

Biomechanik am Design in der Natur für NwT-Lehramt:

Präsenzzeit: 30 Stunden

Selbststudium (Vor-, Nachbereitung, inkl. Erbringung der Erfolgskontrolle): 30 Stunden

Laborpraktikum

Präsenz: 4 Versuche (je 2 x 4 Std.): 32 Stunden

Selbststudium, inkl. Vor-, Nachbereitung und Erfolgskontrolle: 28 Stunden

Summe: 60 Stunden

Informationstechnik I - Praktikum:

Präsenzzeit: 30 Stunden

Selbststudium (Vor-, Nachbereitung, inkl. Erbringung der Erfolgskontrolle): 30 Stunden

Empfehlungen

Informationstechnik I - Praktikum:

Kenntnisse in den Grundlagen der Programmierung sind empfohlen (Besuch des MINT-Kurs C++). Die Inhalte des Moduls Digitaltechnik sind hilfreich.

Lehr- und Lernformen

Seminar, Praktikum, Exkursion, Vorlesung

6.4 Modul: Wahlpflicht Bauingenieurwesen - Holzbau (bauiEX103-NWTHB) [M-BGU-104518]

Verantwortung: Prof. Dr.-Ing. Philipp Dietsch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile					
T-BGU-107463	Grundlagen des Holzbaus	4 LP	Dietsch		
T-BGU-109476	Projektarbeit Holzbau	4 LP	Dietsch		

Erfolgskontrolle(n)

- Teilleistung T-BGU-107463 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1
- Teilleistung T-BGU-109476 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Voraussetzungen

Das Modul darf nicht zusammen mit einem der Module Wahlpflicht Bauingenieurwesen - Wasserbau [M-BGU-104622] und Wahlpflicht Bauingenieurwesen - Hydrologie [M-BGU-104623] belegt werden.

Qualifikationsziele

Die Studierenden können die grundlegenden Eigenschaften des Konstruktionsbaustoffs Holz beschreiben. Sie können die Systemtragwirkung von Konstruktionen aus Holz analysieren und bewerten. Die Studierenden können grundlegende Bauteile und Verbindungen bemessen und konstruieren.

Inhalt

- · Grundlagen: Beispiele von Holzbauten, Holz als Baustoff
- Bemessung von Holz-Bauteilen, Verbindungen

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen

Die Projektarbeit Holzbau wird im Sommersemester durchgeführt und ist als Anwendung der erlernten Grundlagen konzipiert.

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Grundlagen des Holzbaus Vorlesung, Übung: 45 Std.
- Bearbeitung einer Projektaufgabe: 75 Std.

Selbststudium:

- · Vor- und Nachbereitung Vorlesungen, Übungen Grundlagen des Holzbaus: 30 Std.
- Prüfungsvorbereitung Einführung in die Grundlagen des Holzbaus (Teilprüfung): 45 Std.
- · Anfertigung des Projektberichts mit Präsentation (Teilprüfung): 45 Std.

Summe: 240 Std.

Empfehlungen

keine

6.5 Modul: Wahlpflicht Bauingenieurwesen - Hydrologie (bauiEX215-NWTHYDROL) [M-BGU-104623]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Sommersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile						
T-BGU-109477	Prüfungsvorleistung Einführung in die Hydromechanik	0 LP	Gromke			
T-BGU-109478	Einführung in die Hydromechanik	4 LP	Gromke			
T-BGU-109480	Hydrologie	4 LP	Zehe			

Erfolgskontrolle(n)

- Teilleistung T-BGU-109477 mit einer unbenoteten Studeinleistung nach § 4 Abs. 3 als Prüfungsleistung
- Teilleistung T-BGU-109478 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-109480 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Voraussetzungen

Das Modul darf nicht zusammen mit einem der Module Wahlpflicht Bauingenieurwesen - Holzbau [M-BGU-104518] und Wahlpflicht Bauingenieurwesen - Wasserbau [M-BGU-104622] belegt werden.

Oualifikationsziele

Die Studierendendie Grundlagen der Hydromechanik beschreiben und deren Anwendung auf spezifische Strömungsprobleme in der Technik und der Umwelt erläutern. Weiterhin können sie die wesentlichen Vorgänge, auf denen der Wasserkreislauf auf der Landoberfläche beruht, beschreiben. Sie können erläutern, in welcher Weise insbesondere anthropogen bedingte Veränderungen auf hydrologische Prozesse einwirken, diese verändern und welche Anforderungen dies für wasserwirtschaftliche und siedlungswasserwirtschaftliche Aufgaben bedeutet. Sie sind in der Lage, wasserwirtschaftliche Maßnahmen zu planen und zu bemessen, indem sie Daten und Informationen bewerten und in den Kontext ihrer Aufgaben einordnen können.

Inhalt

- · Grundlagen der Hydromechanik
- · Rohrströmungen, Umströmung starrer Körper, Gerinneströmungen
- · Prozesse des Wasserkreislaufs, Wasserbilanz, Abfluss und Abflussbildung
- Modellkonzepte für Einzugsgebietshydrologie

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen

keine

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- · Einführung in die Hydromechanik Vorlesung, Übung: 45 Std.
- Hydrologie Vorlesung, Übung: 45 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen Einführung in die Hydromechanik: 15 Std.
- · Auswertung der Laborexperimente zur Hydromechanik (Prüfungsvorleistung): 15 Std.
- Prüfungsvorbereitung Einführung in die Hydromechanik (Teilprüfung): 45 Std.
- · Vor- und Nachbereitung Vorlesungen, Übungen Hydrologie: 30 Std.
- Prüfungsvorbereitung Hydrologie (Teilprüfung): 45 Std.

Summe: 240 Std.

Empfehlungen keine

6.6 Modul: Wahlpflicht Bauingenieurwesen - Wasserbau (bauiEX214-NWTWB) [M-BGU-104622]

Verantwortung: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Sommersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile						
T-BGU-109477	Prüfungsvorleistung Einführung in die Hydromechanik	0 LP	Gromke			
T-BGU-109478	Einführung in die Hydromechanik	4 LP	Gromke			
T-BGU-109479	Wasserbau und Wasserwirtschaft	4 LP	Rodrigues Pereira da Franca			

Erfolgskontrolle(n)

- Teilleistung T-BGU-109477 mit einer unbenoteten Studeinleistung nach § 4 Abs. 3 als Prüfungsleistung
- Teilleistung T-BGU-109478 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-109479 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Voraussetzungen

Das Modul darf nicht zusammen mit einem der Module Wahlpflicht Bauingenieurwesen - Holzbau [M-BGU-104518] und Wahlpflicht Bauingenieurwesen - Hydrologie [M-BGU-104623] belegt werden.

Qualifikationsziele

Die Studierendendie Grundlagen der Hydromechanik beschreiben und deren Anwendung auf spezifische Strömungsprobleme in der Technik und der Umwelt erläutern. Weiterhin können sie die wasserwirtschaftlichen Aufgaben eines planenden Ingenieurs beschreiben. Sie können erläutern, welche Anforderungen insbesondere durch anthropogen bedingte Veränderungen für die wasserwirtschaftlichen Aufgaben entstehen. Sie sind in der Lage, wasserwirtschaftliche Maßnahmen für spezifische Einsatzbereiche und Funktionen zu planen und zu bemessen, indem sie Daten und Informationen bewerten und in den Kontext ihrer Aufgaben einordnen können.

Inhalt

- · Grundlagen der Hydromechanik
- Rohrströmungen, Umströmung starrer Körper, Gerinneströmungen
- · Anlagen zur Abflussregelung / Wasserbauwerke
- · Feststofftransport in Fließgewässern

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen

keine

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Einführung in die Hydromechanik Vorlesung, Übung: 45 Std.
- Wasserbau und Wasserwirtschaft Vorlesung, Übung: 45 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen Einführung in die Hydromechanik: 15 Std.
- Auswertung der Laborexperimente zur Hydromechanik (Prüfungsvorleistung): 15 Std.
- Prüfungsvorbereitung Einführung in die Hydromechanik (Teilprüfung): 45 Std.
- · Vor- und Nachbereitung Vorlesungen, Übungen Wasserbau und Wasserwirtschaft: 30 Std.
- Prüfungsvorbereitung Wasserbau und Wasserwirtschaft (Teilprüfung): 45 Std.

Summe: 240 Std.

Empfehlungen keine

Naturwissenschaft und Technik LA Master Gymnasien 2015 Hauptfach (Master of Education (M.Ed.)) Modulhandbuch mit Stand vom 10.03.2022

6.7 Modul: Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik - Vertiefung Lebensmittelverfahrenstechnik [M-CIWVT-105866]

Verantwortung: Dr. Volker Gaukel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II) (EV ab

01.10.2021)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Sommersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile						
T-CIWVT-100152	Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel	3 LP	Gaukel			
T-CIWVT-111535	Lebensmittelkunde und -funktionalität	3 LP	Watzl			
Wahlpflichtblock (Wahl: 1 Bestandteil sowie 2 LP)						
T-CIWVT-111435	Extrusionstechnik	2 LP	Emin			
T-CIWVT-111433	Trocknen von Dispersionen	2 LP	Karbstein			

Qualifikationsziele

Vertiefung Verfahrenstechnischer Grundlagen am Beispiel der Lebensmittelverarbeitung:

Lebensmittelkunde und -funktionalität:

Wahlpflicht:

- Extrusionstechnik:
- Trocknen von Dispersionen:

Inhalt

Vertiefung Verfahrenstechnischer Grundlagen am Beispiel der Lebensmittelverarbeitung:

Lebensmittelkunde und -funktionalität:

Wahlpflicht:

- Extrusionstechnik:
- Trocknen von Dispersionen:

6.8 Modul: Wahlpflicht Elektro- und Informationstechnik - Elektrotechnik [M-ETIT-104766]

Verantwortung: Prof. Dr.-Ing. Michael Braun

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-ETIT-100784	Hybride und elektrische Fahrzeuge	4 LP	Becker		
T-ETIT-101924	Erzeugung elektrischer Energie	4 LP	Hoferer		

Erfolgskontrolle(n)

Hybride und elektrische Fahrzeuge:

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Erzeugung elektrischer Energie:

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung

Die Gesamtmodulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen.

Voraussetzungen

Keine

Qualifikationsziele

Hybride und elektrische Fahrzeuge:

Die Studierenden verstehen die technische Funktion aller Antriebskomponenten von hybriden und elektrischen Fahrzeugen sowie deren Zusammenspiel im Antriebsstrang. Sie verfügen über Detailwissen der Antriebskomponenten, insbesondere Batterien und Brennstoffzellen, leistungselektronische Schaltungen und elektrische Maschinen inkl. der zugehörigen Getriebe. Weiterhin kennen sie die wichtigsten Antriebstopologien und ihre spezifischen Vor- und Nachteile. Die Studierenden können die technischen, ökonomischen und ökologischen Auswirkungen alternativer Antriebstechnologien für Kraftfahrzeuge beurteilen und bewerten.

Erzeugung elektrischer Energie:

Die Studierenden sind in der Lage, energietechnische Problemstellungen zu erkennen und Lösungsansätze zu erarbeiten. Sie haben ein Verständnis für physikalisch-theoretische Zusammenhänge der Energietechnik erlangt. Sie sind ebenfalls in der Lage die erarbeiteten Lösungen fachlich in einem wissenschaftlichen Format zu beschreiben, zu analysieren und zu erklären

Inhalt

Hybride und elektrische Fahrzeuge:

Ausgehend von den Mobilitätsbedürfnissen der modernen Industriegesellschaft und den politischen Rahmenbedingungen zum Klimaschutz werden die unterschiedlichen Antriebs- und Ladekonzepte von batterieelektrischen- und hybridelektrischen Fahrzeugen vorgestellt und bewertet. Die Vorlesung gibt einen Überblick über die Komponenten des elektrischen Antriebsstranges, insbesondere Batterie, Ladeschaltung, DC/DC-Wandler, Wechselrichter, elektrische Maschine und Getriebe.

Gliederung:

Hybride Fahrzeugantriebe; Elektrische Fahrzeugantriebe; Fahrwiderstände und Energieverbrauch; Betriebsstrategie; Energiespeicher; Grundlagen elektrischer Maschinen; Asynchronmaschinen; Synchronmaschinen; Sondermaschinen; Leistungselektronik; Laden; Umwelt; Fahrzeugbeispiele; Anforderungen und Spezifikationen.

Erzeugung elektrischer Energie:

Grundlagenvorlesung Erzeugung elektrischer Energie. Von der Umwandlung der Primärenergieressourcen der Erde in kohlebefeuerten Kraftwerken und in Kernkraftwerken bis zur Nutzung erneuerbarer Energien behandelt die Vorlesung das gesamte Spektrum der Erzeugung. Die Vorlesung gibt einen Überblick über die physikalischen Grundlagen, die technischwirtschaftlichen Aspekte und das Entwicklungspotential der Erzeugung elektrischer Energie sowohl aus konventionellen als auch aus regenerativen Quellen.

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen.

Arbeitsaufwand

Hybride und elektrische Fahrzeuge:

14x V und 7x U à 1,5 h: = 31,5 h 14x Nachbereitung V à 1 h = 14 h 6x Vorbereitung zu U à 2 h = 12 h Prüfungsvorbereitung: = 60 h

Prüfungszeit = 2 h

Insgesamt = 119,5 h (entspricht 4 Leistungspunkten)

Erzeugung elektrischer Energie:

Präsenzstudienzeit: 30 h Selbststudienzeit: 90 h

Insgesamt 120 h (entspricht 4 Leistungspunkten)

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch Elektrotechnik I+II für Wirtschaftsingenieure)

Lehr- und Lernformen

Vorlesung und Übung

6.9 Modul: Wahlpflicht Elektro- und Informationstechnik - Informationstechnik [M-ETIT-104765]

Verantwortung: Dr.-Ing. Jens Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-ETIT-109300	Informationstechnik I	4 LP	Sax	
T-ETIT-109319	Informationstechnik II und Automatisierungstechnik	4 LP	Sax	

Erfolgskontrolle(n)

Informationstechnik I:

Schriftlich Prüfung im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung und Übung (4 LP)

Informationstechnik II und Automatisierungstechnik:

Schriftliche Prüfung im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung und Übung (4LP)

Voraussetzungen

Keine

Qualifikationsziele

Informationstechnik I:

Die Studierenden lernen Aufbau und Funktionsweise informationstechnischer Systeme und deren Verwendung kennen. Die Studierenden können:

- · die Charakteristika von eingebetteten Systemen abgrenzen.
- · verschiedene Programmiersprachen und -paradigmen nennen und deren Unterschiede gegenüberstellen.
- · die Grundbestandteile der Programmiersprache C++ erläutern sowie Programme in dieser Sprache anfertigen.
- die zur Erstellung eines ausführbaren Programms notwendigen Komponenten aufzählen und deren Interaktion beschreiben.
- Programmstrukturen mit Hilfe grafischer Beschreibungsmittel darstellen.
- das objektorientierte Programmierparadigma gegenüber traditioneller Herangehensweise abgrenzen sowie objektorientierte Programme erstellen.
- · die Struktur objektorientierter Programme grafisch abbilden
- generelle Rechnerarchitekturen beschreiben, deren Vor- und Nachteile gegenüberstellen, sowie Möglichkeiten zur Performanzsteigerung erläutern.
- unterschiedliche Abstraktionsebenen der Datenspeicherung beschreiben. Sie können verschiedene Möglichkeiten, Daten strukturiert abzuspeichern und zu organisieren, nennen und bewerten.
- die Aufgaben eines Betriebssystems beschreiben, sowie die grundlegenden Funktionen von Prozessen und Threads wiedergeben.
- · die Phasen und Prozesse des Projektmanagements erläutern und die Planung kleiner Projekte skizzieren.

Informationstechnik II und Automatisierungstechnik

Die Studierenden lernen aktuelle Problemstellungen der Informationstechnik und die Werkzeuge für deren Lösung kennen, beginnend bei einfachen Algorithmen bis hin zu selbstlernenden Systemen. Die Studierenden können:

- die Merkmale, Eigenschaften und Klassen von Algorithmen benennen und einordnen, sowie die Laufzeitkomplexität bestimmen.
- bekannte Sortier-, Such- und Optimierungsalgorithmen gegenüberstellen und demonstrieren.
- · die Merkmale, Eigenschaften und Komponenten von selbstlernenden Systemen benennen und abgrenzen.
- · Methoden des maschinellen Lernens einordnen, beschreiben und bewerten.
- · Die Charakteristika sowie die Notwendigkeit und Vorgehensweise zur Analyse großer Datenbestände beschreiben.
- Ansätze zur Verwaltung und Analyse großer Datenbestände hinsichtlich ihrer Anwendbarkeit und Wirksamkeit einschätzen.
- · Methoden zur Anomalieerkennung wiedergeben.
- Begriffe der IT-Sicherheit angeben und typische Schutzmechanismen einordnen.
- die grundlegenden Komponenten, Funktionen und Aufgaben der Automatisierungstechnik in verschiedenen Einsatzbereichen gegenüberstellen und anhand ihres Automatisierungsgrades einordnen.

Inhalt

Informationstechnik I:

Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- Programmiersprachen, Programmerstellung und Programmstrukturen
- · Objektorientierung
- · Rechnerarchitekturen und eingebettete Systeme
- · Datenstrukturen und Datenbanken
- Projektmanagement
- Betriebssysteme und Prozesse

Übung Informationstechnik I:

Begleitend zur Vorlesung werden in der Übung die Grundlagen der Programmiersprache C++ vermittelt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt, sowie die Lösungen dazu detailliert erläutert. Schwerpunkte sind dabei der Aufbau und die Analyse von Programmen sowie deren Erstellung.

Informationstechnik II und Automatisierungstechnik:

Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- · Grundlagen und Eigenschaften verschiedener Klassen von Algorithmen
- Selbstlernende Systeme und maschinelles Lernen, beispielsweise Clusteringverfahren und Neuronale Netze
- Grundlagen und Verfahren zur Analyse großer Datenbestände
- Verfahren zur Anomalieerkennung als Anwendungsfeld von selbstlernenden Systemen auf große Datenmengen
- Grundlagenbegriffe und Prozesse zur Entwicklung sicherer Software
- Bedeutung, grundlegende Begriffe und Komponenten der Automatisierungstechnik sowie deren informationstechnische Realisierung

Übung Informationstechnik II und Automatisierungstechnik:

Begleitend zur Vorlesung werden in der Übung die Grundlagen der in der Vorlesung vorgestellten Methoden erläutert und deren Anwendung aufgezeigt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt sowie die Lösungen dazu detailliert erläutert

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen.

Arbeitsaufwand

Informationstechnik I:

Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)

Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)

Klausurvorbereitung und Präsenz in selbiger (46 Stunden)

120 h = 4 LP

Informationstechnik II und Automatisierungstechnik:

Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)

Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)

Klausurvorbereitung und Präsenz in selbiger (46 Stunden)

120 h = 4 LP

Empfehlungen

Informationstechnik I sollte vor Informationstechnik II belegt werden.

Informationstechnik I:

Kenntnisse in den Grundlagen der Programmierung (MINT-Kurs) sind empfohlen (Besuch des MINT-Kurs C++).

Informationstechnik II und Automatisierungstechnik:

Kenntnisse des Moduls Informationstechnik I sind empfohlen.

Lehr- und Lernformen

Vorlesung und Übung

6.10 Modul: Wahlpflicht Maschinenbau - Technik erleben und vermitteln [M-MACH-104070]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-MACH-108698	Mechatronische Systeme und Produkte (NwT)	2 LP	Albers, Matthiesen	
T-MACH-108694	Workshop Entwicklung mechatronischer Systeme und Produkte (NwT)	2 LP	Albers, Matthiesen	
T-MACH-108697	Kooperation in interdisziplinären Teams (NwT)	2 LP	Albers, Matthiesen	
T-MACH-108699	Führung von Teams (NwT)	2 LP	Albers, Matthiesen	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (30 Minuten) und Studienleistungen.

Voraussetzungen

keine

Oualifikationsziele

Ziel des Schwerpunktmoduls "Technik erleben und vermitteln" ist das Erlernen und Erleben von ingenieursmäßigen Arbeitsweisen.

In der Vorlesung lernen die Studierenden die theoretischen Grundlagen der Ingenieursdisziplinen (Produktentwicklungsprozesse, Systemmodellierungsmethoden, Kreativitätsmethoden, ...) und wenden diese Kompetenzen in einer semesterbegleitenden Projektarbeit an.

In der Projektarbeit – dem Workshop Mechatronische Systeme und Produkte – bearbeiten sie zusammen mit Mechatronik-Studierenden (Bachelor, 5.Semester) in Teams eine Entwicklungsaufgabe. Dabei werden verschiedene Entwicklungsphasen, von der Erarbeitung technischer Lösungskonzepte bis hin zur Entwicklung und Validierung von virtuellen Prototypen und physischen Funktionsprototypen, durchlaufen.

Um das mechatronische Produkt zu entwickeln, arbeiten die Studierenden in kooperierenden Teams zusammen. Im Team hat jeder Studierende eine Rolle (Gruppensprecher, Mechanik-Ing., System-Ing., Informationstechnik-Ing. sowie Test-Ing.). Die Studierende nehmen dabei die Rolle des Methoden-Ingenieurs ein. Sie sind für eine kontinuierliche Reflexion zuständig und unterstützen die Teams methodisch bei der Ideenfindung und Lösungsauswahl der selbstentwickelten Systeme. Dadurch lernen und erleben die Studierenden ingenieursmäßiges Arbeiten, strukturiertes Problemlösen und das interdisziplinäre Arbeiten im Team

NwT-Studierende kennen ingenieursmäßiges Arbeiten, strukturiertes Problemlösen und lernen sowie erleben das interdisziplinäre Arbeiten im Team.

Inhalt

- Einführung
- Produktentwicklungsprozesse
- MBSE und SysML
- Methoden der frühen Validierung
- Validierung und Verifikation
- Reflektion und Vorstellung der Teamergebnisse
- Mechatronische Produktentwicklung

Zusammensetzung der Modulnote

Die Modulnote setzt sich zu gleichen Teilen aus den Noten der benoteten Teilleistungen des Moduls zusammen.

Arbeitsaufwand

240 h, davon 78,5 h Präsenzzeit, 161,5 h Selbststudium und Prüfungsvorbereitung

Empfehlungen

keine

Lehr- und Lernformen

Vorlesung, Übung und Projektarbeit

6.11 Modul: Wahlpflicht Verfahrenstechnik - Grundlagen Lebensmittelverfahrenstechnik [M-CIWVT-104479]

Verantwortung: Dr. Volker Gaukel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wissenschaftliches Hauptfach Naturwissenschaft und Technik (Wahlpflichtmodule I und II) (EV bis

30.09.2021)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile							
T-CIWVT-106058	Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung	3 LP	Gaukel				
T-CIWVT-100153	Praktikum Lebensmittelverfahrenstechnik	1 LP	Gaukel				
T-CIWVT-108801	Lebensmittelkunde und -funktionalität	4 LP	Watzl				

Erfolgskontrolle(n)

T-CIWVT-106058 - Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung: schriftliche Prüfung

T-CIWVT-100153 - Praktikum Lebensmittelverfahrenstechnik: Studienleistung

T-CIWVT-108801 - Lebensmittelkunde und -funktionalität: mündliche Prüfung

Details zu den einzelnen Erfolgskontrollen siehe bei den jeweiligen Teilleistungen.

Voraussetzungen

keine

Qualifikationsziele

Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung:

Die Studierenden können

- · die Einflussfaktoren auf die Produktentwicklung von Lebensmitteln nennen und an einem Beispiel verwenden.
- Grundoperationen der Verfahrenstechnik an einem Beispiel herausfinden und benennen.
- die wichtigsten Definitionen, Grundgleichungen und dimensionslose Kennzahlen der Themengebiete Strömungslehre, Separieren, Homogenisieren und Emulgieren, Haltbarmachen und stationäre Wärmeübertragung schildern und diese am Beispiel der Herstellung von Milch zuordnen und anwenden.
- v wichtige in der Vorlesung behandelte verfahrenstechnische Apparate skizzenhaft zeichnen und deren Funktion erklären
- · den Verfahrensablauf der Herstellung von Milch und Milchprodukten beschreiben und erläutern.

Praktikum Lebensmittelverfahrenstechnik:

Die Studierenden können

- · den Versuchsablauf in eigenen Worten wiedergeben
- in kleinen Gruppen Versuche durchführen
- · Versuchsergebnisse darstellen, beurteilen und hinterfragen
- · einen Arbeitsbericht anfertigen

Lebensmittelkunde und -funktionalität:

Die Studierenden sind in der Lage auf Nährstoffbasis eine gesundheitliche Bewertung von Lebensmitteln bzw. Ernährungsweisen durchzuführen.

Inhalt

Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung:

- · Eine Einführung in die Verfahrenstechnik und Produktentwicklung in der Lebensmittelindustrie.
- Am Beispiel der Verarbeitung von Milch werden Grundlagen der Strömungslehre, Rheologische Eigenschaften von Lebensmitteln, Grundlagen des Separierens und Zentrifugierens (Mechanisches Trennen), Membrantrennverfahren, Grundlagen des Homogenisierens und Emulgierens, Grundlagen der Haltbarmachund von LM (Verderbsvorgänge, Reaktionskinetik, Mikroorganismen, Verfahrensüberblick, Definition des Pasteurisierens und Sterilisierens, Technische Reaktionsführung und Verweilzeitverhalten), Grundlagen der Wärmeübertragung und Apparate zur Wärmebehandlung flüssiger Lebensmittel besprochen.
- Schließlich wird die Herstellung weiterer Milchprodukte (Käse/Joghurt/Milchpulver) besprochen.

Praktikum Lebensmittelverfahrenstechnik:

Versuche zur Verarbeitung von Lebensmitteln (z.B. Trocknen, Gefrieren, Homogenisieren...)

Lebensmittelkunde und -funktionalität:

Bedeutung der Ernährung für die Gesundheit. Im Mittelpunkt stehen Makro- und Mikronährstoffe (Kohlenhydrate, Proteine, Fette, Vitamine, Mineralstoffe, Spurenelemente, Ballaststoffe, sekundäre Pflanzenstoffe) sowie deren Bedeutung im Stoffwechsel des Menschen. Es werden die wesentlichen Lebensmittelgruppen (pflanzlich, tierisch) für die Nährstoffzufuhr vorgestellt. Darüber hinaus

werden funktionelle Aspekte der Lebensmittel sowie einzelner Inhaltsstoffe (z. B. Senkung des Cholesterinspiegels, Stimulation des Immunsystems, Modulation von Krankheitsrisiken) behandelt.

Zusammensetzung der Modulnote

Die Modulnote ist der nach Leistungspunkten gewichtete Durchschnitt aus den Noten der Teilprüfungen.

Arbeitsaufwand

Präsenzzeit: 75 h

Selbststudium (inkl. Vor- und Nachbereitung sowie Prüfungsvorbereitung): 165 h

Summe: 240 h

Lehr- und Lernformen

Vorlesung, Übung, Praktikum

7 Teilleistungen

7.1 Teilleistung: Biomechanik am Design in der Natur für NwT-Lehramt [T-CIWVT-111945]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104205 - Vertiefungspraktikum NwT

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

7.2 Teilleistung: Einführung in die Hydromechanik [T-BGU-109478]

Verantwortung: Dr.-Ing. Christof-Bernhard Gromke

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104623 - Wahlpflicht Bauingenieurwesen - Hydrologie
M-BGU-104622 - Wahlpflicht Bauingenieurwesen - Wasserbau

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Semester1

Lehrveranstaltungen						
SS 2022	6221814	Einführung in die Hydromechanik	2 SWS	Vorlesung / Übung (VÜ) / ♀	Gromke	
SS 2022	6221816	Übungen zu Einführung in die Hydromechanik	SWS	Übung (Ü) / 🗣	Gromke	

Legende: 🖥 Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

Die Prüfungsvorleistung Einführung in die Hydromechanik (T-BGU-109477) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-BGU-109477 - Prüfungsvorleistung Einführung in die Hydromechanik muss erfolgreich abgeschlossen worden sein.

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Einführung in die Hydromechanik

6221814, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

Der Kurs "Einführung in die Hydromechanik" richtet sich in erster Linie an Lehramtsstudierende im Fach NWT. In diesem Kurs werden die Grundlagen der Hydromechanik mit Hinblick auf eine Anwendung in der Hydraulik behandelt. Der Kurs besteht aus Vorlesungen und aus Laborexperimenten in denen die Studierenden eigenständig Versuche durchführen und auswerten. Der Kurs wird ergänzt durch die Lehrveranstaltung "Übungen zu Einführung in die Hydromechanik" (LV-Nr.: 6221816).

Organisatorisches

Die Registrierung in ILIAS ist bis zum 21.04 möglich. Bitte melden Sie sich jedoch zu Planungszwecken so bald wie möglich an!

Sie müssen einen Aufnahmeantrag stellen, um in den Kurs aufgenommen zu werden. Beschreiben Sie im Feld Nachricht, warum Sie beitreten möchten. Geben Sie an, ob sie NwT-Studierende sind oder nicht. Sobald Ihr Antrag angenommen oder abgelehnt wurde, erhalten Sie eine Benachrichtigung.

Übungen zu Einführung in die Hydromechanik

Übung (Ü) Präsenz

6221816, SS 2022, SWS, Im Studierendenportal anzeigen

Inhalt

Der Kurs "Übungen zu Einführung in die Hydromechanik" richtet sich in erster Linie an Lehramtsstudierende im Fach NWT. Dieser Kurs ist ein Begleitkurs zur Lehrveranstaltung "Einführung in die Hydromechanik" (LV-Nr. 6221814) und findet während der Vorlesungszeit alle zwei Wochen statt.

Organisatorisches

Die Registrierung in ILIAS ist bis zum 21.04 möglich. Bitte melden Sie sich jedoch zu Planungszwecken so bald wie möglich an!

Sie müssen einen Aufnahmeantrag stellen, um in den Kurs aufgenommen zu werden. Beschreiben Sie im Feld Nachricht, warum Sie beitreten möchten. Geben Sie an, ob sie NwT-Studierende sind oder nicht. Sobald Ihr Antrag angenommen oder abgelehnt wurde, erhalten Sie eine Benachrichtigung.

7.3 Teilleistung: Erzeugung elektrischer Energie [T-ETIT-101924]

Verantwortung: Dr.-Ing. Bernd Hoferer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104766 - Wahlpflicht Elektro- und Informationstechnik - Elektrotechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 21/22	2307356	Erzeugung elektrischer Energie	2 SWS	Vorlesung (V) / 🗣	Hoferer		
Prüfungsveranstaltungen							
WS 21/22	7307356	Erzeugung elektrischer Energie			Hoferer		
SS 2022	7307356	Erzeugung elektrischer Energie			Hoferer		

Legende: ■ Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen

7.4 Teilleistung: Extrusionstechnik [T-CIWVT-111435]

Verantwortung: PD Dr.-Ing. Azad Emin

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105866 - Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik - Vertiefung

Lebensmittelverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich2DrittelnotenJedes Sommersemester4

Lehrveranstaltungen							
SS 2022	22246	Extrusionstechnik	1 SWS	Vorlesung (V) / ●	Emin		
Prüfungsve	Prüfungsveranstaltungen						
WS 21/22	7220032	Extrusionstechnik			Emin		
SS 2022	7220032	Extrusionstechnik	·		Emin		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 45 Minuten und wird als Teilprüfung der Klausur "Ausgewählte Formulierungstechnologien" angeboten.

Voraussetzungen

7.5 Teilleistung: Führung von Teams (NwT) [T-MACH-108699]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104070 - Wahlpflicht Maschinenbau - Technik erleben und vermitteln

Voraussetzung für: T-MACH-108698 - Mechatronische Systeme und Produkte (NwT)

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrveranstaltungen							
WS 21/22	2145163	Führung von Teams (NwT)	2 SWS	Vorlesung (V)	Matthiesen		
Prüfungsveranstaltungen							
WS 21/22	76T-MACH-108699	Führung von Teams (NwT)			Matthiesen		
SS 2022	76-T-MACH-108699	Führung von Teams (NwT)			Matthiesen		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Kolloquiums.

Voraussetzungen

Aus organisatorischen Gründen ist die Teilnehmerzahl begrenzt.

Empfehlungen

Ein Anmeldeformular wird auf der Homepage des IPEK bereitgestellt. Eine frühe Anmeldung ist von Vorteil.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Führung von Teams (NwT)

2145163, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

Termine und Veranstaltungsort werden auf der Institutshomepage angegeben.

Organisatorisches

Termine und Veranstaltungsort werden auf der Institutshomepage angegeben.

7.6 Teilleistung: Grundlagen des Holzbaus [T-BGU-107463]

Verantwortung: Prof. Dr.-Ing. Philipp Dietsch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104518 - Wahlpflicht Bauingenieurwesen - Holzbau

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen							
WS 21/22	6200507	Grundlagen des Holzbaus	2 SWS	Vorlesung (V)	Dietsch, Mitarbeiter/ innen			
WS 21/22	6200508	Übungen zu Grundlagen des Holzbaus	1 SWS	Übung (Ü)	Mitarbeiter/innen			
Prüfungsve	ranstaltungen							
WS 21/22	8235107463	Grundlagen des Holzbaus			Dietsch			
SS 2022	8235107463	Grundlagen des Holzbaus			Dietsch			

Erfolgskontrolle(n)

schriftliche Prüfung, 60 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

7.7 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Dr.-Ing. Klaus-Peter Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104766 - Wahlpflicht Elektro- und Informationstechnik - Elektrotechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
WS 21/22	2306321	Hybride und elektrische Fahrzeuge	2 SWS	Vorlesung (V) / 😘	Doppelbauer		
WS 21/22	2306323	Übungen zu 2306321 Hybride und elektrische Fahrzeuge	1 SWS	Übung (Ü) / 😘	Doppelbauer		
Prüfungsve	ranstaltungen						
WS 21/22	7306321	Hybride und elektrische Fahrzeuge	Hybride und elektrische Fahrzeuge				
SS 2022	7306321	Hybride und elektrische Fahrzeuge			Doppelbauer		

Legende: ■ Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").

7.8 Teilleistung: Hydrologie [T-BGU-109480]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften **Bestandteil von:** M-BGU-104623 - Wahlpflicht Bauingenieurwesen - Hydrologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen						
WS 21/22	6200513	Hydrologie	2 SWS	Vorlesung (V) / 🕃	Zehe, Wienhöfer	
WS 21/22	6200514	Übungen zu Hydrologie	1 SWS	Übung (Ü) / 🗣	Zehe, Wienhöfer	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

Die Lehrveranstaltung Einführung in die Hydromechanik (6221814) sollte unbedingt belegt worden sein.

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Hydrologie

6200513, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

7.9 Teilleistung: Informationstechnik I [T-ETIT-109300]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104765 - Wahlpflicht Elektro- und Informationstechnik - Informationstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen							
SS 2022	2311651	Informationstechnik I	2 SWS	Vorlesung (V) / 🗣	Sax			
SS 2022	2311652	Übungen zu 2311651 Informationstechnik I	1 SWS	Übung (Ü) / 🗣	Haas			
Prüfungsve	ranstaltungen							
WS 21/22	7311651	Informationstechnik I			Sax			
SS 2022	7311651	Informationstechnik I			Sax			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Voraussetzungen

keine

Empfehlungen

Grundlagen der Programmierung sind hilfreich (MINT-Kurs).

Die Inhalte des Moduls Digitaltechnik sind hilfreich.

7.10 Teilleistung: Informationstechnik I - Praktikum [T-ETIT-109301]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-CIWVT-104205 - Vertiefungspraktikum NwT

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2022	2311653	Informationstechnik I – Praktikum	1 SWS	Praktikum (P) / 🗣	Sax	
Prüfungsveranstaltungen						
SS 2022	7311653	Informationstechnik I - Praktikum			Sax	

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Voraussetzungen

7.11 Teilleistung: Informationstechnik II und Automatisierungstechnik [T-ETIT-109319]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104765 - Wahlpflicht Elektro- und Informationstechnik - Informationstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen							
SS 2022	2311654	Informationstechnik II und Automatisierungstechnik	2 SWS	Vorlesung (V) / 🗣	Sax		
SS 2022	2311655	Übungen zu 2311654 Informationstechnik II und Automatisierungstechnik	1 SWS	Übung (Ü) / ●	Krauter		
Prüfungsve	eranstaltungen						
WS 21/22	7311654	Informationstechnik II und Autom	Informationstechnik II und Automatisierungstechnik				
SS 2022	7311654	Informationstechnik II und Automatisierungstechnik			Sax		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Voraussetzungen

keine

Empfehlungen

Grundlagen der Programmierung sind hilfreich (MINT-Kurs).

Die Inhalte des Moduls "Informationstechnik I" sind hilfreich.

7.12 Teilleistung: Kooperation in interdisziplinären Teams (NwT) [T-MACH-108697]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104070 - Wahlpflicht Maschinenbau - Technik erleben und vermitteln

Voraussetzung für: T-MACH-108698 - Mechatronische Systeme und Produkte (NwT)

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrveranstaltungen						
WS 21/22	2145166	Kooperation in interdisziplinären Teams	2 SWS	Praktikum (P) / 🕃	Matthiesen	
Prüfungsve	Prüfungsveranstaltungen					
WS 21/22	76-T-MACH-108697	Kooperation in interdisziplinären 7	ooperation in interdisziplinären Teams (NwT)			
SS 2022	76-T-MACH-108697	Kooperation in interdisziplinären Teams (NwT)			Matthiesen	

Legende: ■ Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Kolloguiums.

Voraussetzungen

Aus organisatorischen Gründen ist die Teilnehmerzahl begrenzt.

Empfehlungen

Ein Anmeldeformular wird auf der Homepage des IPEK bereitgestellt. Eine frühe Anmeldung ist von Vorteil.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Kooperation in interdisziplinären Teams

2145166, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt

Inhalt

Weitere Informationen siehe IPEK-Homepage/Aushang

Literaturhinweise

Alt, Oliver (2012): Modell-basierte Systementwicklung mit SysML. In der Praxis. In: Modellbasierte Systementwicklung mit SysML.

Janschek, Klaus (2010): Systementwurf mechatronischer Systeme. Methoden - Modelle - Konzepte. Berlin, Heidelberg: Springer. Weilkiens, Tim (2008): Systems engineering mit SysML/UML. Modellierung, Analyse, Design. 2., aktualisierte u. erw. Aufl. Heidelberg: Dpunkt-Verl

7.13 Teilleistung: Laborpraktikum [T-BGU-103403]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-CIWVT-104205 - Vertiefungspraktikum NwT

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	6200118	Laborpraktikum	SWS	Praktikum (P) / 🗣	Vortisch, Mitarbeiter/ innen	
Prüfungsveranstaltungen						
WS 21/22	8231103403	Laborpraktikum			Vortisch	

Legende: ■ Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Versuchsausarbeitungen (je ca. 2-4 Seiten) zu 4 Versuchen in 4 ausgewählten Instituten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Laborpraktikum

6200118, WS 21/22, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Inhalt

Organisatorisches

Der Kurs "Laborpraktikum" setzt sich aus 4 Teilkursen von vier verschiedenen Instituten der Fakultät zusammen. Jeder der 4 Teilkurse des Laborpraktikums hat einen Umfang von insgesamt 2 Montagnachmittagen in zwei aufeinanderfolgenden Wochen. Jedem Studierenden werden 4 nicht überschneidende Teilkurse von 4 verschiedenen Instituten nach dessen Prioritäten zugeteilt. Anmeldung erfolgt über den ILIAS-Kurs. Der Anmeldezeitraum ist in der ersten Semesterwoche des Wintersemesters.

Prüfung

Die erfolgreiche Teilnahme an einem Teilkurs wird vom entsprechenden Institut bestätigt. Nach Vorlage von 4 Teilnahmebescheinigungen gilt die Leistung "Laborpraktikum" als bestanden. Das Ergebnis wird im Campus-System zu Ende des Semesters eingetragen.

Voraussetzungen

keine

Teilnehmerzahl

etwa 85 Personen

Organisatorisches

Generelle Informationen zur Organisation auf der Website des IfV und Terminvergabe über ILIAS

7.14 Teilleistung: Lebensmittelkunde und -funktionalität [T-CIWVT-108801]

Verantwortung: Prof. Dr. Bernhard Watzl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104479 - Wahlpflicht Verfahrenstechnik - Grundlagen Lebensmittelverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
WS 21/22	22207	Lebensmittelkunde und -funktionalität	2 SWS	Vorlesung (V) / ¶⁴	Watzl		
Prüfungsve	Prüfungsveranstaltungen						
WS 21/22	7220019	Lebensmittelkunde und -funktionalit	ebensmittelkunde und -funktionalität				
SS 2022	7220019	Lebensmittelkunde und -funktionalität			Watzl		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Lebensmittelkunde und -funktionalität

22207, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

7.15 Teilleistung: Lebensmittelkunde und -funktionalität [T-CIWVT-111535]

Verantwortung: Prof. Dr. Bernhard Watzl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105866 - Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik - Vertiefung

Lebensmittelverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
WS 21/22	22207	Lebensmittelkunde und -funktionalität	2 SWS	Vorlesung (V) /	Watzl		
Prüfungsve	Prüfungsveranstaltungen						
WS 21/22	7220019	ebensmittelkunde und -funktionalität			Watzl		

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Lebensmittelkunde und -funktionalität

Vorlesung (V) Präsenz

22207, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

7.16 Teilleistung: Masterarbeit - Naturwissenschaft und Technik [T-CIWVT-109162]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104480 - Modul Masterarbeit - Naturwissenschaft und Technik

> Version **Teilleistungsart** Leistungspunkte Notenskala **Turnus** Abschlussarbeit Drittelnoten Jedes Semester 17 2

Voraussetzungen

Es müssen 20 LP im Teilstudiengang NwT erbracht sein.

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 6 Monate

Maximale Verlängerungsfrist 3 Monate

Korrekturfrist 6 Wochen

7.17 Teilleistung: Mechatronische Systeme und Produkte (NwT) [T-MACH-108698]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104070 - Wahlpflicht Maschinenbau - Technik erleben und vermitteln

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	2	Drittelnoten	Jedes Wintersemester	1

Lehrverans	taltungen				
WS 21/22	2303003	Übung zu 2303161 Mechatronische Systeme und Produkte	1 SWS	Übung (Ü) / 🗣	Matthiesen, Hohmann, N.N.
WS 21/22	2303161	Mechatronische Systeme und Produkte	2 SWS	Vorlesung (V) / 🕃	Matthiesen, Hohmann
Prüfungsve	ranstaltungen		•		
WS 21/22	76-T-MACH-108698	Mechatronische Systeme und Pi	rodukte (Nv	vT)	Matthiesen
SS 2022	76-T-MACH-108698	Mechatronische Systeme und Pr	Mechatronische Systeme und Produkte (NwT)		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (Dauer: 30min)

Voraussetzungen

Für die Zulassung zu der Prüfung ist die erfolgreiche Teilnahme am Workshop Mechatronische Systeme und Produkte (NwT), Kooperation in interdisziplinären Teams (NwT)sowie Führung in Teams (NwT)verpflichtend.

Aus organisatorischen Gründen ist die Teilnehmerzahl begrenzt.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- Die Teilleistung T-MACH-108694 Workshop Entwicklung mechatronischer Systeme und Produkte (NwT) muss erfolgreich abgeschlossen worden sein.
- Die Teilleistung T-MACH-108697 Kooperation in interdisziplinären Teams (NwT) muss erfolgreich abgeschlossen worden sein.
- 3. Die Teilleistung T-MACH-108699 Führung von Teams (NwT) muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Ein Anmeldeformular wird auf der Homepage des IPEK bereitgestellt. Eine frühe Anmeldung ist von Vorteil.

7.18 Teilleistung: Medienkompetenz im Lehramt: Digitale Werkzeuge im naturwissenschaftlich-technischen Unterricht [T-CIWVT-111946]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104204 - Fachdidaktik NwT III

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 **Notenskala** Drittelnoten **Turnus** Jedes Sommersemester Version 1

7.19 Teilleistung: Praktikum Lebensmittelverfahrenstechnik [T-CIWVT-100153]

Verantwortung: Dr. Volker Gaukel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104479 - Wahlpflicht Verfahrenstechnik - Grundlagen Lebensmittelverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	22219	Praktikum Lebensmittelverfahrenstechnik (für LmCh)	1 SWS	Praktikum (P) / 🗣	Gaukel, und Mitarbeiter	
Prüfungsveranstaltungen						
WS 21/22	7220001	Praktikum Lebensmittelverfahrenste	Praktikum Lebensmittelverfahrenstechnik			

Legende: 🖥 Online, 💲 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung. Im Rahmen des Praktikums findet ein mündliches Gruppenkolloquium statt. Es ist ein Praktikumsbericht anzufertigen. Dieser muss erfolgreich testiert werden.

Voraussetzungen

keine

Anmerkungen

Lernziele:

Die Studierenden können

- · den Versuchsablauf in eigenen Worten wiedergeben
- in kleinen Gruppen Versuche durchführen
- Versuchsergebnisse darstellen, beurteilen und hinterfragen
- · einen Arbeitsbericht anfertigen

Inhalte:

· Versuche zur Verarbeitung von Lebensmitteln (z.B. Trocknen, Gefrieren, Homogenisieren...)

Arbeitsaufwand:

Präsenzzeit: 5 h

· Vor- und Nachbereitung, Protokoll: 25 h

• Gesamt: 30 h (1 LP)

Literatur:

7.20 Teilleistung: Projektarbeit Holzbau [T-BGU-109476]

Verantwortung: Prof. Dr.-Ing. Philipp Dietsch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften **Bestandteil von:** M-BGU-104518 - Wahlpflicht Bauingenieurwesen - Holzbau

TeilleistungsartPrüfungsleistung anderer Art

Leistungspunkte 4 **Notenskala** Drittelnoten

Turnus Jedes Sommersemester **Dauer** 1 Sem. Version

Erfolgskontrolle(n)

Projektbericht, ca. 15 Seiten, und Präsentation, ca. 20 min.

Voraussetzungen

keine

Empfehlungen

Die Lehrveranstaltung Grundlagen des Holzbaus (6200507) sollte unbedingt belegt worden sein.

Anmerkungen

7.21 Teilleistung: Projektorientierter Unterricht am Beispiel des Mikrocontrollers [T-CIWVT-109159]

Verantwortung: Prof. Dr. Gerd Gidion

Andreas Sexauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104204 - Fachdidaktik NwT III

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4DrittelnotenJedes Sommersemester2

Lehrveranstaltungen						
SS 2022	5012135	Messen, Steuern, Regeln mit dem Mikrocontroller (Lehramt NWT)	2 SWS	Block (B) /	Sexauer	
Prüfungsveranstaltungen						
SS 2022	7200007	Projektorientierter Unterricht am Beispiel des Mikrocontrollers			Sexauer	

Legende: █ Online, ເ➡ Präsenz/Online gemischt, ➡ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle entspricht einer Prüfungsleistung anderer Art, die aus zwei Teilen besteht: einer veranstaltungsbegleitenden Dokumentation im Umfang von 10-20 Seiten und deren Präsentation. Details werden zu Semesterbeginn bekannt gegeben.

Voraussetzungen

7.22 Teilleistung: Prüfungsvorleistung Einführung in die Hydromechanik [T-BGU-109477]

Verantwortung: Dr.-Ing. Christof-Bernhard Gromke

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104623 - Wahlpflicht Bauingenieurwesen - Hydrologie
M-BGU-104622 - Wahlpflicht Bauingenieurwesen - Wasserbau

Voraussetzung für: T-BGU-109478 - Einführung in die Hydromechanik

issetzung für. 1-500-1094/6 - Einführung in die Hydromechanik

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes SommersemesterDauer
1 Sem.Version
1 Sem.

Lehrveranstaltungen						
SS 2022	6221816	Übungen zu Einführung in die Hydromechanik	SWS	Übung (Ü) / ●	Gromke	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Auswertung von 4 Laborexperimenten, jeweils ca. 10 Seiten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Einführung in die Hydromechanik

6221816, SS 2022, SWS, Im Studierendenportal anzeigen

Übung (Ü) Präsenz

Inhalt

Der Kurs "Übungen zu Einführung in die Hydromechanik" richtet sich in erster Linie an Lehramtsstudierende im Fach NWT. Dieser Kurs ist ein Begleitkurs zur Lehrveranstaltung "Einführung in die Hydromechanik" (LV-Nr. 6221814) und findet während der Vorlesungszeit alle zwei Wochen statt.

Organisatorisches

Die Registrierung in ILIAS ist bis zum 21.04 möglich. Bitte melden Sie sich jedoch zu Planungszwecken so bald wie möglich an!

Sie müssen einen Aufnahmeantrag stellen, um in den Kurs aufgenommen zu werden. Beschreiben Sie im Feld Nachricht, warum Sie beitreten möchten. Geben Sie an, ob sie NwT-Studierende sind oder nicht. Sobald Ihr Antrag angenommen oder abgelehnt wurde, erhalten Sie eine Benachrichtigung.

7.23 Teilleistung: Sicherheit und Unfallschutz [T-CIWVT-109161]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

M-CIWVT-104205 - Vertiefungspraktikum NwT Bestandteil von:

> **Teilleistungsart** Leistungspunkte Notenskala **Turnus** Version Studienleistung best./nicht best. Jedes Wintersemester 3

Lehrveranstaltungen					
WS 21/22	2200020	Sicherheit und Unfallschutz	sws	Seminar (S)	Ehlermann

Erfolgskontrolle(n)

Studienleistung

Voraussetzungen

keine

Empfehlungen

Qualifikationsziele:

Die Studierenden kennen die Richtlinie zur Sicherheit im Unterricht (RiSU) der Kultusministerkonferenz (KMK), die rechtlichen Rahmenbedingungen zum sicheren Arbeiten im Unterricht und können diese im Hinblick auf den NwT-Unterricht anwenden. Sie können schulrelevante Sicherheitsaspekte des NwT-Unterrichts darlegen und sind fähig Risiken beim praktischen Arbeiten zu erkennen. Sie können ferner Schüler*innen in Abhängigkeit von Klassenstufe und -größe richtig einschätzen, Fehleinschätzungen und Verhalten der Schüler*innen antizipieren und dadurch Gefahrensituationen vermeiden. Die Studierenden sind sich ihrer Vorbildfunktion als zukünftig in der Schule lehrende und handelnde Person bewusst und können sowohl Verhaltens- als auch Einstellungs- und Bewusstseinsänderung im Sinne von Sicherheits- und Umweltbewusstsein pädagogisch umsetzen.

- Richtlinie zur Sicherheit im Unterricht (RiSU) der KMK und weitere rechtliche Rahmenbedingungen:
 - Gefährdungsbeurteilungen
 - Arbeitssicherheit, Gefahrensätze
 - Einrichten von Arbeitsplätzen und Laboren
 - Umweltschutz
 - Erste Hilfe und Notfalleinrichtungen, Festlegung von Schutz- und Hygienemaßnahmen
 - Erstellung von Betriebsanweisungen
 - Unterweisung von Schüler*innen und Lehrkräften
 - Anforderungen für spezielle Tätigkeiten
- zielgruppenspezifisches und altersgerechtes Einschätzen von Schüler*innen hinsichtlich Sicherheit und Unfallschutz im Unterricht

Arbeitsaufwand: 60 h

Präsenzzeit: 20 h

Selbststudium, inkl. Vor-, Nachbereitung und Erbringung der Studienleistung: 40 h

7.24 Teilleistung: Trocknen von Dispersionen [T-CIWVT-111433]

Verantwortung: Prof. Dr.-Ing. Heike Karbstein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105866 - Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik - Vertiefung

Lebensmittelverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich2DrittelnotenJedes Sommersemester2

Lehrveranstaltungen							
SS 2022	22226	Trocknen von Dispersionen	1 SWS	Vorlesung (V) / 🗣	Karbstein		
Prüfungsve	Prüfungsveranstaltungen						
WS 21/22	7220030	Trocknen von Dispersionen			Karbstein		
SS 2022	7220030	Trocknen von Dispersionen			Karbstein		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 45 Minuten und wird als Teilprüfung der Klausur "Ausgewählte Formulierungstechnologien" angeboten.

Voraussetzungen

7.25 Teilleistung: Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung [T-CIWVT-106058]

Verantwortung: Dr. Volker Gaukel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104479 - Wahlpflicht Verfahrenstechnik - Grundlagen Lebensmittelverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	3	Drittelnoten	1

Lehrveranstaltungen							
WS 21/22	22213	Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung (für LmCh, WiWi)	2 SWS	Vorlesung (V) /	Gaukel		
Prüfungsve	eranstaltungen						
WS 21/22	7220007	Verfahrenstechnische Grundlagen a Lebensmittelverarbeitung	Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung				
SS 2022	7220007	Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung			Gaukel		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfgang von 120 Minuten.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung (für LmCh, WiWi)

Vorlesung (V) Online

22213, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

7.26 Teilleistung: Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel [T-CIWVT-100152]

Verantwortung: Dr. Volker Gaukel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105866 - Wahlpflicht Chemieingenieurwesen/Verfahrenstechnik - Vertiefung

Lebensmittelverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen							
SS 2022	22214	Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel	2 SWS	Vorlesung (V) / 🗣	Gaukel		
Prüfungsve	eranstaltungen						
WS 21/22	7220004	Vertiefung verfahrenstechnischer G Lebensmittel - Mündliche Prüfung	Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel - Mündliche Prüfung				
SS 2022	7220004	Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel			Gaukel		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach §4 Abs. 2 Nr. 2 der SPO. Dauer der Prüfung: ca. 20 Minuten. Es werden die Inhalte der Vorlesung "Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel" geprüft.

Voraussetzungen

keine

Empfehlungen

Verfahrenstechnisches Grundlagenwissen insbesondere im Bereich Wärme- und Stoffübertragung sowie Strömungslehre

Anmerkungen

LV 22214: VERTIEFUNG VERFAHRENSTECHNISCHER GRUNDLAGEN AM BEISPIEL LEBENSMITTEL

Lernziele:

Die Studierenden können

- · die behandelten Herstellungsverfahren wiedergeben
- · die Grundoperationen der Verfahrenstechnik am Beispiel herausfinden und benennen
- die wichtigsten Definitionen, Grundgleichungen und dimensionslosen Kennzahlen der Themengebiete instationäre Transportprozesse, Verdampfen und Zerkleinern schildern und diese am Beispiel der behandelten Herstellungsverfahren zuordnen und anwenden
- wichtige in der Vorlesung behandelte verfahrenstechnische Apparate skizzenhaft zeichnen und deren Funktion erklären
- Vor- und Nachteile bestimmter Verfahren erkennen und geeignete Alternativen identifizieren

Inhalte:

- · Grundlagen des Trocknens (Stofftransportprozesse) / aw-Wert
- · Apparate zur Trocknung von Lebensmitteln
- Instationäre Transportprozesse (Wärme- und Stofftransport)
- · Grundlagen des Kühlen und Gefrierens von LM
- · Grundlagen des Kristallisierens
- Kühl- und Gefrierverfahren (Besispiel Eiskremherstellung)
- Verfahren zur Zuckerherstellung
- · Grundlagen des Verdampfens
- Verarbeitung von Obst und Gemüse
- · Zerkleinern von Feststoffen
- · Analytik von Partikelgrößenverteilungen
- · Verfahren zur Bierherstellung
- · Extrusionsverfahren

Arbeitsaufwand:

- Präsenzzeit: 30 h
- · Vor- und Nachbereitung, Prüfungsvorbereitung: 60 h
- Gesamt: 90 h (3 LP)

Literatur:

- Tscheuschner H D Grundzüge der Lebensmitteltechnik, 3. Auflage (2004), Behr's-Verlag, ISBN 3-89947-085-0
- Heiss, Rudolf (Hrsg.): Lebensmitteltechnologie (Biotechnologische, chemische, mechanische und thermische Verfahren der Lebensmittelverarbeitung), 6. völlig überarb. Aufl., (2003), ISBN: 3-540-00476-9
- Kessler H G: Lebensmittel- und Bioverfahrenstechnik Molkereitechnologie, 4. Auflage, (1996) Verlag A. Kessler, München, ISBN 3-9802378-4-2, (auch in Englisch verfügbar)
- Frede, Wolfgang; Osteroth, Dieter (Hrsg.): Taschenbuch für Lebensmittelchemiker und -technologen, Band 1-3(1993), Springer-Verlag, ISBN: 3-540-56605-8
- Schuchmann, Heike P., Schuchmann, Harald: Lebensmittelverfahrenstechnik (Rohstoffe, Prozesse, Produkte), 1. Auflage (2005), Wiley-VCH, Weinheim, ISBN 3-527-31230-7

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Vertiefung verfahrenstechnischer Grundlagen am Beispiel Lebensmittel

Vorlesung (V) Präsenz

22214, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

7.27 Teilleistung: Wasserbau und Wasserwirtschaft [T-BGU-109479]

Verantwortung: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104622 - Wahlpflicht Bauingenieurwesen - Wasserbau

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen									
WS 21/22	6200511	Wasserbau und Wasserwirtschaft	2 SWS	Vorlesung (V)	Rodrigues Pereira da Franca				
WS 21/22	6200512	Übungen zu Wasserbau und Wasserwirtschaft	1 SWS	Übung (Ü)	Seidel				
Prüfungsveranstaltungen									
WS 21/22	828240109479	Wasserbau und Wasserwirtschaft			Rodrigues Pereira da Franca				

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

Die Lehrveranstaltung Einführung in die Hydromechanik (6221814) sollte unbedingt belegt worden sein.

Anmerkungen

7.28 Teilleistung: Workshop Entwicklung mechatronischer Systeme und Produkte (NwT) [T-MACH-108694]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104070 - Wahlpflicht Maschinenbau - Technik erleben und vermitteln

Voraussetzung für: T-MACH-108698 - Mechatronische Systeme und Produkte (NwT)

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen								
WS 21/22	2145162	Workshop Mechatronische Systeme und Produkte	2 SWS	Praktikum (P) / 🗣	Matthiesen, Hohmann			
Prüfungsveranstaltungen								
WS 21/22	76-T-MACH-108694	Workshop Entwicklung mechatron (NwT)	Matthiesen					
SS 2022	76-T-MACH-108694	Workshop Entwicklung mechatronischer Systeme und Produkte (NwT)			Matthiesen			

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Begleitend zum Workshop werden Abgabeleistungen gefordert. In diesen wird die Anwendung des Wissens der Studenten aus der Vorlesung geprüft.

Voraussetzungen

Aus organisatorischen Gründen ist die Teilnehmerzahl begrenzt.

Empfehlungen

Ein Anmeldeformular wird auf der Homepage des IPEK bereitgestellt.

Eine frühe Anmeldung ist von Vorteil.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Workshop Mechatronische Systeme und Produkte

2145162, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Organisatorisches

Ort und Zeit s. Homepage

Literaturhinweise

Alt, Oliver (2012): Modell-basierte Systementwicklung mit SysML. In der Praxis. In: Modellbasierte Systementwicklung mit SysML.

Janschek, Klaus (2010): Systementwurf mechatronischer Systeme. Methoden - Modelle - Konzepte. Berlin, Heidelberg: Springer. Weilkiens, Tim (2008): Systems engineering mit SysML/UML. Modellierung, Analyse, Design. 2., aktualisierte u. erw. Aufl. Heidelberg: Dpunkt-Verl.